論文の概要: HAIR: Hardness-Aware Inverse Reinforcement Learning with Introspective Reasoning for LLM Alignment
- arxiv url: http://arxiv.org/abs/2503.18991v2
- Date: Tue, 06 May 2025 13:47:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 16:47:35.724779
- Title: HAIR: Hardness-Aware Inverse Reinforcement Learning with Introspective Reasoning for LLM Alignment
- Title(参考訳): HAIR:LLMアライメントのためのイントロスペクティブ推論を用いたハードネス対応逆強化学習
- Authors: Ruoxi Cheng, Haoxuan Ma, Weixin Wang,
- Abstract要約: HAIR(Hardness-Aware Inverse Reinforcement Learning with Introspective Reasoning)は、メンバーシップ推論攻撃におけるシャドーモデルにインスパイアされた新しいアライメントアプローチである。
提案手法は,(1)イントロスペクティブ推論機能を利用する構造的プロンプトを用いた7つの有害カテゴリを対象とした,バランスの取れた安全連鎖データセットの構築である。
4つの無害度と4つの有用性ベンチマークにわたる総合的な実験は、HAIRが最先端のパフォーマンスを達成することを示す。
- 参考スコア(独自算出の注目度): 0.0351124620232225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The alignment of large language models (LLMs) with human values remains critical yet hindered by four key challenges: (1) scarcity of balanced safety datasets, (2) alignment tax, (3) vulnerability to jailbreak attacks due to shallow alignment, and (4) inability to dynamically adapt rewards according to task difficulty. To address these limitations, we introduce HAIR (Hardness-Aware Inverse Reinforcement Learning with Introspective Reasoning), a novel alignment approach inspired by shadow models in membership inference attacks. Our approach consists of two main components: (1) construction of a balanced safety Chain-of-Draft (CoD) dataset for seven harmful categories using structured prompts that leverage the introspective reasoning capabilities of LLMs; and (2) training of category-specific reward models with Group Relative Policy Optimization (GRPO), dynamically tuning optimization to task difficulty at both the data and model levels. Comprehensive experiments across four harmlessness and four usefulness benchmarks demonstrate that HAIR achieves state-of-the-art performance, outperforming all baseline methods in safety while maintaining high levels of usefulness.
- Abstract(参考訳): 大規模言語モデル(LLM)と人的価値のアライメントは,(1)バランスの取れた安全データセットの不足,(2)アライメント税,(3)アライメント不足によるジェイルブレイク攻撃に対する脆弱性,(4)タスクの難易度に応じて報酬を動的に適応できない4つの主要な課題によって,依然として重要な障害となっている。
これらの制約に対処するため,HAIR(Hardness-Aware Inverse Reinforcement Learning with Introspective Reasoning)を導入する。
提案手法は,LLMのイントロスペクティブ推論能力を活用する構造的プロンプトを用いた7つの有害カテゴリを対象とした,バランスの取れた安全連鎖(CoD)データセットの構築と,グループ相対ポリシー最適化(GRPO)を用いたカテゴリ固有の報酬モデルのトレーニング,データとモデルレベルでのタスクの難易度を動的に最適化する,という2つの要素から構成される。
4つの無害度と4つの有用性ベンチマークによる総合的な実験により、HAIRは最先端のパフォーマンスを達成し、高レベルの有用性を維持しながら、安全におけるすべてのベースライン手法より優れていることが示された。
関連論文リスト
- Improving LLM General Preference Alignment via Optimistic Online Mirror Descent [57.622821649679786]
人間からのフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)と人間の嗜好の整合において顕著な効果を示した。
本稿では,Bradley-Terry (BT) モデル仮定を廃止し,汎用ゲームとして定式化された LLM のアライメントについて検討する。
提案手法は双対性ギャップ上の$O(T-1)$バウンドを達成し、以前の$O(T-1/2)$の結果を改善することを示す。
論文 参考訳(メタデータ) (2025-02-24T05:24:52Z) - MM-RLHF: The Next Step Forward in Multimodal LLM Alignment [59.536850459059856]
MM-RLHF, $mathbf120k$ fine-fine, human-annotated preference comparison pairsを含むデータセットを紹介する。
本稿では,報酬モデルの品質向上とアライメントアルゴリズムの効率向上のために,いくつかの重要なイノベーションを提案する。
我々のアプローチは、$mathbf10$の異なる次元と$mathbf27$のベンチマークで厳格に評価されている。
論文 参考訳(メタデータ) (2025-02-14T18:59:51Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - SeRA: Self-Reviewing and Alignment of Large Language Models using Implicit Reward Margins [30.767203592231496]
SeRA(Self-Reviewing and Alignment)は、既存のDAAと簡単に組み合わせられる費用効率が高く効果的な手法である。
SeRAは,(1)暗黙の報酬マージンを用いたサンプル選択,(2)暗黙の報酬を用いた選好ブートストラッピング,の2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-10-12T04:17:28Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion [43.77763433288893]
コントラストポリシーグラディエント(Contrastive Policy Gradient, COPG)は、単純かつ数学的に原理化された新しいRLアルゴリズムである。
本稿では,直接アライメント手法のIPO(アイデンティティ優先最適化)と古典的政策勾配を一般化する手法を提案する。
提案したCOPGをおもちゃのバンディット問題で実験し,その特性を説明するとともに,要約タスクでLLMを微調整する。
論文 参考訳(メタデータ) (2024-06-27T14:03:49Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling [34.32744849352087]
本研究では,人間の好みに合わせて,大規模言語モデルを逐次微調整する手法を提案する。
理論的には閉形式最適SPOポリシーと損失関数を導出する。
異なる大きさのLLMと複数の評価データセットの実証結果から、SPOはLLMを人間の嗜好の多次元にわたって整列させることに成功した。
論文 参考訳(メタデータ) (2024-05-21T12:47:17Z) - Fine-Tuning Language Models with Reward Learning on Policy [68.70065254564642]
人間からのフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせる効果的なアプローチとして現れている。
その人気にもかかわらず、(固定された)報酬モデルが不正確な流通に悩まされることがある。
本稿では、政策サンプルを用いて報酬モデルを洗練し、流通を継続する、教師なしのフレームワークであるポリシーに関する報酬学習(RLP)を提案する。
論文 参考訳(メタデータ) (2024-03-28T10:02:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。