論文の概要: Inverse Reinforcement Learning with Dynamic Reward Scaling for LLM Alignment
- arxiv url: http://arxiv.org/abs/2503.18991v5
- Date: Thu, 25 Sep 2025 02:38:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 12:02:33.88239
- Title: Inverse Reinforcement Learning with Dynamic Reward Scaling for LLM Alignment
- Title(参考訳): LLMアライメントのための動的リワードスケーリングを用いた逆強化学習
- Authors: Ruoxi Cheng, Haoxuan Ma, Weixin Wang, Ranjie Duan, Jiexi Liu, Xiaoshuang Jia, Simeng Qin, Xiaochun Cao, Yang Liu, Xiaojun Jia,
- Abstract要約: DR-IRL(逆強化学習によるリワードの動的調整)を提案する。
まず、IRLを介して7つの有害なカテゴリをカバーするバランスの取れた安全データセットを用いて、カテゴリ固有の報酬モデルを訓練する。
次に,テキストエンコーダのコサイン類似性によるデータレベルの硬さ,報酬ギャップによるモデルレベルの応答性など,タスク難易度による報酬を導入することにより,グループ相対政策最適化(GRPO)を強化する。
- 参考スコア(独自算出の注目度): 51.10604883057508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alignment is vital for safely deploying large language models (LLMs). Existing techniques are either reward-based (train a reward model on preference pairs and optimize with reinforcement learning) or reward-free (directly fine-tune on ranked outputs). Recent research shows that well-tuned reward-based pipelines remain robust, and single-response demonstrations can outperform pairwise preference data. However, two challenges persist: (1) imbalanced safety datasets that overrepresent common hazards while neglecting long-tail threats; and (2) static reward models that ignore task difficulty, limiting optimization efficiency and attainable gains. We propose DR-IRL (Dynamically adjusting Rewards through Inverse Reinforcement Learning). We first train category-specific reward models using a balanced safety dataset covering seven harmful categories via IRL. Then we enhance Group Relative Policy Optimization (GRPO) by introducing dynamic reward scaling--adjusting rewards by task difficulty--data-level hardness by text encoder cosine similarity, model-level responsiveness by reward gaps. Extensive experiments across various benchmarks and LLMs demonstrate that DR-IRL outperforms all baseline methods in safety alignment while maintaining usefulness.
- Abstract(参考訳): アライメントは、大きな言語モデル(LLM)を安全にデプロイするのに不可欠である。
既存のテクニックは報酬ベース(好みのペアで報酬モデルを訓練し、強化学習で最適化する)または報酬なし(ランク付けされたアウトプットで直接微調整する)である。
近年の研究では、十分に調整された報酬ベースのパイプラインは引き続き堅牢であり、シングルレスポンスのデモンストレーションはペアワイズ選好データより優れていることが示されている。
しかし,(1)長期的脅威を無視しながら共通の危険を過小評価する不均衡な安全データセット,(2)課題の難しさを無視し,最適化効率を制限し,達成可能な利益を得る静的報酬モデル,の2つの課題が続いている。
DR-IRL (Inverse Reinforcement Learning) を提案する。
まず、IRLを介して7つの有害なカテゴリをカバーするバランスの取れた安全データセットを用いて、カテゴリ固有の報酬モデルを訓練する。
次に,テキストエンコーダのコサイン類似性によるデータレベルの硬さ,報酬ギャップによるモデルレベルの応答性など,動的報酬スケーリングを導入することで,グループ相対政策最適化(GRPO)を強化した。
様々なベンチマークやLLMによる大規模な実験により、DR-IRLは有用性を保ちながら安全アライメントにおけるすべてのベースライン手法より優れていることが示された。
関連論文リスト
- DARLR: Dual-Agent Offline Reinforcement Learning for Recommender Systems with Dynamic Reward [14.323631574821123]
モデルベースのオフライン強化学習は、レコメンデータシステムにとって有望なアプローチとして登場した。
DarLRは、レコメンデーションポリシーを強化するために、世界モデルを動的に更新することを提案する。
4つのベンチマークデータセットの実験は、DARLRの優れた性能を示している。
論文 参考訳(メタデータ) (2025-05-12T06:18:31Z) - More is Less: The Pitfalls of Multi-Model Synthetic Preference Data in DPO Safety Alignment [80.04449725137177]
直接選好最適化(DPO)は、人間のフィードバックによる強化学習の、シンプルで効果的な代替手段として登場した。
我々の研究は、DPOアライメントに関連する、目覚ましい、安全性に特有な現象を明らかにした。
選択されたペアと拒否されたペアに対してのみ自己生成されたレスポンスを使用することで、より強力なモデルからのレスポンスを含む構成を大幅に上回る。
論文 参考訳(メタデータ) (2025-04-03T00:36:40Z) - Improving LLM General Preference Alignment via Optimistic Online Mirror Descent [57.622821649679786]
人間からのフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)と人間の嗜好の整合において顕著な効果を示した。
本稿では,Bradley-Terry (BT) モデル仮定を廃止し,汎用ゲームとして定式化された LLM のアライメントについて検討する。
提案手法は双対性ギャップ上の$O(T-1)$バウンドを達成し、以前の$O(T-1/2)$の結果を改善することを示す。
論文 参考訳(メタデータ) (2025-02-24T05:24:52Z) - MM-RLHF: The Next Step Forward in Multimodal LLM Alignment [59.536850459059856]
MM-RLHF, $mathbf120k$ fine-fine, human-annotated preference comparison pairsを含むデータセットを紹介する。
本稿では,報酬モデルの品質向上とアライメントアルゴリズムの効率向上のために,いくつかの重要なイノベーションを提案する。
我々のアプローチは、$mathbf10$の異なる次元と$mathbf27$のベンチマークで厳格に評価されている。
論文 参考訳(メタデータ) (2025-02-14T18:59:51Z) - Few-shot Steerable Alignment: Adapting Rewards and LLM Policies with Neural Processes [50.544186914115045]
大きな言語モデル(LLM)は、日々のアプリケーションにますます組み込まれています。
個人ユーザの多様な嗜好との整合性を確保することは、重要な課題となっている。
数発のステアライメントのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-18T16:14:59Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
新たな合成データ生成パイプラインを用いて48,000の命令追従プロンプトを生成する。
合成プロンプトでは、リジェクションサンプリング(RS)とモンテカルロ木探索(MCTS)の2つの選好データセットキュレーション手法を用いる。
実験により、MCTSが生成した選好ペアにおける共有プレフィックスは、限界はあるが一貫した改善をもたらすことが明らかになった。
高コントラストの選好ペアは一般的に低コントラストのペアよりも優れているが、両者を組み合わせることで最高のパフォーマンスが得られることが多い。
論文 参考訳(メタデータ) (2024-12-18T15:38:39Z) - Solving the Inverse Alignment Problem for Efficient RLHF [0.0]
言語モデルトレーニングにおける「逆アライメント問題」を定義する。
本研究では,周期的に凍結されたポリシーに沿ったオフライン嗜好データセットのサブセットに対して,報酬モデルを繰り返し微調整することにより,バニラRLHFを改善するか否かを検討する。
論文 参考訳(メタデータ) (2024-12-13T19:47:38Z) - In-Dataset Trajectory Return Regularization for Offline Preference-based Reinforcement Learning [15.369324784520538]
In-Dataset Trajectory Return Regularization (DTR) を提案する。
DTRは報酬バイアスの下で不正確な軌道縫合を学習するリスクを軽減する。
また,複数の報酬モデルを効果的に統合するアンサンブル正規化手法を導入する。
論文 参考訳(メタデータ) (2024-12-12T09:35:47Z) - SeRA: Self-Reviewing and Alignment of Large Language Models using Implicit Reward Margins [30.767203592231496]
SeRA(Self-Reviewing and Alignment)は、既存のDAAと簡単に組み合わせられる費用効率が高く効果的な手法である。
SeRAは,(1)暗黙の報酬マージンを用いたサンプル選択,(2)暗黙の報酬を用いた選好ブートストラッピング,の2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-10-12T04:17:28Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Contrastive Policy Gradient: Aligning LLMs on sequence-level scores in a supervised-friendly fashion [43.77763433288893]
コントラストポリシーグラディエント(Contrastive Policy Gradient, COPG)は、単純かつ数学的に原理化された新しいRLアルゴリズムである。
本稿では,直接アライメント手法のIPO(アイデンティティ優先最適化)と古典的政策勾配を一般化する手法を提案する。
提案したCOPGをおもちゃのバンディット問題で実験し,その特性を説明するとともに,要約タスクでLLMを微調整する。
論文 参考訳(メタデータ) (2024-06-27T14:03:49Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
複数の参照モデルを用いた直接選好最適化のための新しいクローズドフォームの定式化を提案する。
得られたアルゴリズムであるMulti-Reference Preference Optimization (MRPO)は、様々な参照モデルからより広範な事前知識を活用する。
MRPOを微調整したLLMは,データ不足や多量性に関わらず,様々な嗜好データにおいてより一般化されていることを示す。
論文 参考訳(メタデータ) (2024-05-26T00:29:04Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
本稿では、複数の応答のオフライン報酬を合理化されたリストワイズフレームワークに組み込む、勾配に基づく報酬最適化手法を提案する。
LIREは実装が簡単で、最小限のパラメータチューニングを必要とし、ペアワイズパラダイムとシームレスに整合する。
実験の結果,LIREは対話タスクや要約タスクのベンチマークにおいて,既存のメソッドよりも一貫して優れていることがわかった。
論文 参考訳(メタデータ) (2024-05-22T10:21:50Z) - SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling [34.32744849352087]
本研究では,人間の好みに合わせて,大規模言語モデルを逐次微調整する手法を提案する。
理論的には閉形式最適SPOポリシーと損失関数を導出する。
異なる大きさのLLMと複数の評価データセットの実証結果から、SPOはLLMを人間の嗜好の多次元にわたって整列させることに成功した。
論文 参考訳(メタデータ) (2024-05-21T12:47:17Z) - Fine-Tuning Language Models with Reward Learning on Policy [68.70065254564642]
人間からのフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせる効果的なアプローチとして現れている。
その人気にもかかわらず、(固定された)報酬モデルが不正確な流通に悩まされることがある。
本稿では、政策サンプルを用いて報酬モデルを洗練し、流通を継続する、教師なしのフレームワークであるポリシーに関する報酬学習(RLP)を提案する。
論文 参考訳(メタデータ) (2024-03-28T10:02:10Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
Weight Averaged Reward Models (WARM) を提案する。
最良N法とRL法を用いた要約タスクの実験は、WARMがLLM予測の全体的な品質とアライメントを改善することを示す。
論文 参考訳(メタデータ) (2024-01-22T18:27:08Z) - Stabilizing RLHF through Advantage Model and Selective Rehearsal [57.504894664689]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、これらのモデルを人間の価値観や好みに合わせることは依然として大きな課題である。
この課題は、報酬のハッキングや破滅的な忘れなど、さまざまな不安定さによって特徴づけられる。
1) 報酬ハッキング防止のために, スコアを直接モデル化し, タスク間のスコア分布を規制するアドバンテージモデル, 2) PPOトレーニングと知識リハーサルのためのデータを戦略的に選択することで, 悲惨な忘れを緩和する選択リハーサルを提案する。
論文 参考訳(メタデータ) (2023-09-18T23:06:32Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendation Describes a set of technique to model dynamic user behavior to order to predict future interaction in sequence user data。
データスパーシリティやノイズの多いデータなど、古くて新しい問題はまだ残っている。
逐次レコメンデーション(CoSeRec)のためのコントラスト型自己監督学習を提案する。
論文 参考訳(メタデータ) (2021-08-14T07:15:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。