論文の概要: Mining-Gym: A Configurable RL Benchmarking Environment for Truck Dispatch Scheduling
- arxiv url: http://arxiv.org/abs/2503.19195v1
- Date: Mon, 24 Mar 2025 22:48:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:50:48.543004
- Title: Mining-Gym: A Configurable RL Benchmarking Environment for Truck Dispatch Scheduling
- Title(参考訳): Mining-Gym: トラックディスパッチスケジューリングのための構成可能なRLベンチマーク環境
- Authors: Chayan Banerjee, Kien Nguyen, Clinton Fookes,
- Abstract要約: Mining Gymは、マイニングプロセス最適化におけるRLアルゴリズムのテストと比較をトレーニングするために設計されたオープンソースのベンチマーク環境である。
このフレームワークは、機器故障の待ち行列やマイニングプロセスの直感性といった、重要なマイニングに関する不確実性をモデル化する。
Mining Gymは、ダッシュボードに組み込まれた包括的なデータロギングシステムと、マイニングサイトのリアルタイムビジュアル表現を備えている。
- 参考スコア(独自算出の注目度): 24.817146786855105
- License:
- Abstract: Mining process optimization particularly truck dispatch scheduling is a critical factor in enhancing the efficiency of open pit mining operations However the dynamic and stochastic nature of mining environments characterized by uncertainties such as equipment failures truck maintenance and variable haul cycle times poses significant challenges for traditional optimization methods While Reinforcement Learning RL has shown promise in adaptive decision making for mining logistics its practical deployment requires rigorous evaluation in realistic and customizable simulation environments The lack of standardized benchmarking environments limits fair algorithm comparisons reproducibility and the real world applicability of RL based approaches in open pit mining settings To address this challenge we introduce Mining Gym a configurable open source benchmarking environment designed for training testing and comparing RL algorithms in mining process optimization Built on Discrete Event Simulation DES and seamlessly integrated with the OpenAI Gym interface Mining Gym provides a structured testbed that enables the direct application of advanced RL algorithms from Stable Baselines The framework models key mining specific uncertainties such as equipment failures queue congestion and the stochasticity of mining processes ensuring a realistic and adaptive learning environment Additionally Mining Gym features a graphical user interface GUI for intuitive mine site configuration a comprehensive data logging system a built in KPI dashboard and real time visual representation of the mine site These capabilities facilitate standardized reproducible evaluations across multiple RL strategies and baseline heuristics
- Abstract(参考訳): マイニングプロセスの最適化、特にトラックのディスパッチスケジューリングは、オープンピットマイニングの効率を高めるための重要な要素である。しかし、機器の故障、トラックのメンテナンス、可変的ハールサイクルタイムといった不確実性によって特徴づけられるマイニング環境の動的で確率的な性質は、従来の最適化手法に重大な課題をもたらす一方で、強化学習 RLは、マイニングの実施に適応的な意思決定の約束を示す一方で、実際のデプロイには、現実的でカスタマイズ可能なシミュレーション環境の厳密な評価が必要である 標準化されたベンチマーク環境の欠如は、オープンピットマイニング環境におけるRLベースのアプローチの再現性と実世界の適用性を制限する この問題に対処するために、マイニングGymは、マイニングプロセスにおけるRLアルゴリズムのトレーニングと比較のために設計された、設定可能なオープンソースベンチマーク環境である。
関連論文リスト
- Constrained Reinforcement Learning for Safe Heat Pump Control [24.6591923448048]
異なる用途のインタフェースを提供する新しいビルディングシミュレータI4Bを提案する。
本研究では,線形平滑ログバリア関数 (CSAC-LB) を用いた制約付きソフトアクタ・クリティカルというモデルレス制約付きRLアルゴリズムを加熱最適化問題に適用する。
ベースラインアルゴリズムに対するベンチマークは、CSAC-LBのデータ探索、制約満足度、性能における効率を示す。
論文 参考訳(メタデータ) (2024-09-29T14:15:13Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - PeersimGym: An Environment for Solving the Task Offloading Problem with Reinforcement Learning [2.0249250133493195]
計算ネットワークにおけるタスクオフロード戦略の開発と最適化に適した,オープンソースのカスタマイズ可能なシミュレーション環境であるPeersimGymを紹介する。
PeersimGymは、幅広いネットワークトポロジと計算制約をサポートし、TextitPettingZooベースのインターフェイスを統合して、RLエージェントのデプロイを、単体とマルチエージェントの両方で行えるようにしている。
本稿では,分散コンピューティング環境におけるオフロード戦略を大幅に強化するRLベースのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2024-03-26T12:12:44Z) - Learning-enabled Flexible Job-shop Scheduling for Scalable Smart
Manufacturing [11.509669981978874]
スマートマニュファクチャリングシステムでは、生産性を最大化するためのソリューションを最適化するために、輸送制約付きフレキシブルなジョブショップスケジューリングが不可欠である。
近年, 深部強化学習(DRL)に基づくFJSPT法の開発が, 大規模一般化の課題に直面している。
Heterogeneous Graph Scheduler (HGS) と呼ばれる新しいグラフベースのDRL法を導入する。
論文 参考訳(メタデータ) (2024-02-14T06:49:23Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Sample Efficient Deep Reinforcement Learning via Local Planning [21.420851589712626]
本研究は,シミュレータを用いた試料効率深部強化学習(RL)に焦点を当てる。
本稿では,この特性を利用した不確実性優先ローカルプランニング(UFLP)というアルゴリズムフレームワークを提案する。
本研究では,この簡単な手法により,難解な探索作業において,いくつかのベースラインRLアルゴリズムのサンプルコストを劇的に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-01-29T23:17:26Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
強化学習アルゴリズムは成功するが、エージェントと環境の間の大量の相互作用を必要とする。
本稿では,教師なしモデルベースRLを用いてエージェントを事前学習する手法を提案する。
我々はReal-Word RLベンチマークにおいて、適応中の環境摂動に対する抵抗性を示唆し、堅牢な性能を示す。
論文 参考訳(メタデータ) (2022-09-24T14:22:29Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。