論文の概要: Invertible Koopman neural operator for data-driven modeling of partial differential equations
- arxiv url: http://arxiv.org/abs/2503.19717v1
- Date: Tue, 25 Mar 2025 14:43:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:51:25.816175
- Title: Invertible Koopman neural operator for data-driven modeling of partial differential equations
- Title(参考訳): 偏微分方程式のデータ駆動モデリングのための可逆クープマンニューラル作用素
- Authors: Yuhong Jin, Andong Cong, Lei Hou, Qiang Gao, Xiangdong Ge, Chonglong Zhu, Yongzhi Feng, Jun Li,
- Abstract要約: Invertible Koopman Neural Operator (IKNO)は、Koopman演算子理論とニューラル演算子にインスパイアされた、新しいデータ駆動モデリングアプローチである。
IKNOは、同じ学習可能なパラメータの下で観測可能な関数とその逆を同時にパラメータ化する。
- 参考スコア(独自算出の注目度): 15.007354910932039
- License:
- Abstract: Koopman operator theory is a popular candidate for data-driven modeling because it provides a global linearization representation for nonlinear dynamical systems. However, existing Koopman operator-based methods suffer from shortcomings in constructing the well-behaved observable function and its inverse and are inefficient enough when dealing with partial differential equations (PDEs). To address these issues, this paper proposes the Invertible Koopman Neural Operator (IKNO), a novel data-driven modeling approach inspired by the Koopman operator theory and neural operator. IKNO leverages an Invertible Neural Network to parameterize observable function and its inverse simultaneously under the same learnable parameters, explicitly guaranteeing the reconstruction relation, thus eliminating the dependency on the reconstruction loss, which is an essential improvement over the original Koopman Neural Operator (KNO). The structured linear matrix inspired by the Koopman operator theory is parameterized to learn the evolution of observables' low-frequency modes in the frequency space rather than directly in the observable space, sustaining IKNO is resolution-invariant like other neural operators. Moreover, with preprocessing such as interpolation and dimension expansion, IKNO can be extended to operator learning tasks defined on non-Cartesian domains. We fully support the above claims based on rich numerical and real-world examples and demonstrate the effectiveness of IKNO and superiority over other neural operators.
- Abstract(参考訳): クープマン作用素理論は、非線形力学系に対する大域的線形化表現を提供するため、データ駆動モデリングの一般的な候補である。
しかし、既存のクープマン作用素に基づく手法は、よく定義された可観測関数とその逆関数を構成する際の欠点に悩まされ、偏微分方程式(PDE)を扱う際には十分非効率である。
これらの問題に対処するために, クープマン演算子理論とニューラル演算子に着想を得た新しいデータ駆動モデリング手法である Invertible Koopman Neural Operator (IKNO) を提案する。
IKNOは可逆ニューラルネットワークを利用して、可観測関数とその逆を同じ学習可能なパラメータの下で同時にパラメータ化する。
クープマン作用素理論にインスパイアされた構造的線形行列は、可観測体の可観測空間に直接配置するのではなく、周波数空間における低周波モードの進化を学ぶためにパラメータ化され、IKNOは他のニューラル作用素と同様に分解不変である。
さらに、補間や次元展開などの前処理により、IKNOは非カルト領域で定義された演算子学習タスクに拡張することができる。
我々は、豊かな数値と実世界の例に基づいて、上記の主張を完全に支持し、IKNOの有効性と他のニューラル演算子よりも優れていることを実証する。
関連論文リスト
- Disentangled Representation Learning for Parametric Partial Differential Equations [31.240283037552427]
ニューラル演算子パラメータから不整合表現を学習するための新しいパラダイムを提案する。
DisentangOは、ブラックボックス・ニューラル・オペレーターパラメータに埋め込まれた変動の潜在的物理的要因を明らかにし、取り除くように設計された、新しいハイパーニューラル・オペレーターアーキテクチャである。
本研究では、DentangOが有意義かつ解釈可能な潜在特徴を効果的に抽出し、ニューラルネットワークフレームワークにおける予測性能と身体的理解の分離を橋渡しすることを示す。
論文 参考訳(メタデータ) (2024-10-03T01:40:39Z) - Linearization Turns Neural Operators into Function-Valued Gaussian Processes [23.85470417458593]
我々は、訓練されたニューラル演算子におけるベイズの不確実性定量化を近似するための新しいフレームワークLUNOを紹介する。
我々の手法はモデル線形化を利用して(ガウス的)重み空間の不確実性をニューラル作用素の予測に推し進める。
これは関数型プログラミングのカリー化の概念の確率的バージョンとして解釈でき、関数値(ガウス的)ランダムプロセスの信念を導出することを示す。
論文 参考訳(メタデータ) (2024-06-07T16:43:54Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Koopman operator learning using invertible neural networks [0.6846628460229516]
クープマン作用素論において、有限次元非線形系は可観測関数の集合を用いて無限だが線型系に変換される。
現在の方法論は可観測関数の可逆性の重要性を無視し、不正確な結果をもたらす傾向にある。
本稿では,CF-INN(Coupling Flow Invertible Neural Network)フレームワークを利用したフローベース動的モード分解(FlowDMD)を提案する。
論文 参考訳(メタデータ) (2023-06-30T04:26:46Z) - Koopman Kernel Regression [6.116741319526748]
クープマン作用素理論は線形時間不変(LTI)ODEによる予測のキャラクタリゼーションに有効なパラダイムであることを示す。
我々は、LTI力学系への変換のみにまたがる、普遍的なクープマン不変核再生ヒルベルト空間(RKHS)を導出する。
実験では、Koopman演算子やシーケンシャルデータ予測器と比較して予測性能が優れていることを示した。
論文 参考訳(メタデータ) (2023-05-25T16:22:22Z) - Learning Dynamical Systems via Koopman Operator Regression in
Reproducing Kernel Hilbert Spaces [52.35063796758121]
動的システムの有限データ軌跡からクープマン作用素を学ぶためのフレームワークを定式化する。
リスクとクープマン作用素のスペクトル分解の推定を関連付ける。
以上の結果から,RRRは他の広く用いられている推定値よりも有益である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-27T14:57:48Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。