論文の概要: Attention IoU: Examining Biases in CelebA using Attention Maps
- arxiv url: http://arxiv.org/abs/2503.19846v2
- Date: Wed, 26 Mar 2025 02:43:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 09:39:21.410707
- Title: Attention IoU: Examining Biases in CelebA using Attention Maps
- Title(参考訳): アテンションIoU:アテンションマップを用いたCelebAのバイアスの検討
- Authors: Aaron Serianni, Tyler Zhu, Olga Russakovsky, Vikram V. Ramaswamy,
- Abstract要約: 本稿では,モデルの内部表現におけるバイアスを明らかにするために,アテンションIoUメトリックとその関連スコアを紹介する。
我々はCelebAデータセットを分析し、Attention-IoUが精度の相違を超えて相関を明らかにすることを発見した。
- 参考スコア(独自算出の注目度): 26.620936006565625
- License:
- Abstract: Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
- Abstract(参考訳): コンピュータビジョンモデルは、幅広いデータセットやタスクに偏見を示し、増幅することが示されている。
分類モデルのバイアスを定量化する既存の方法は、主にデータセットの分布とサブグループでのモデル性能に注目し、モデルの内部動作を見渡す。
モデルの内部表現におけるバイアスを明らかにするためにアテンションマップを用いて、バイアスを引き起こす可能性のある画像の特徴を識別する、アテンション・イオウ(Attention-IoU)メトリックとその関連スコアを紹介する。
まず,合成したWaterbirdsデータセットのアテンションIoUを検証し,モデルバイアスを正確に測定した。
次に、CelebAデータセットを分析し、Attention-IoUが精度の相違を超えて相関を明らかにすることを発見した。
CelebA における偏見の表現の仕方について検討した。
最後に、属性相関を変更するためのトレーニングセットをサブサンプリングすることにより、データセットラベルに存在しない潜在的な共起変数がAttention-IoUで明らかになることを示す。
関連論文リスト
- How far can bias go? -- Tracing bias from pretraining data to alignment [54.51310112013655]
本研究では, 事前学習データにおける性別占有バイアスと, LLMにおける性別占有バイアスの相関について検討した。
その結果,事前学習データに存在するバイアスがモデル出力に増幅されることが判明した。
論文 参考訳(メタデータ) (2024-11-28T16:20:25Z) - Images Speak Louder than Words: Understanding and Mitigating Bias in Vision-Language Model from a Causal Mediation Perspective [13.486497323758226]
広範囲なデータセットで事前訓練された視覚言語モデルは、性情報とオブジェクトやシナリオを関連付けることによって、必然的にバイアスを学習することができる。
本稿では,因果媒介分析を取り入れた枠組みを提案し,バイアス発生と伝播の経路を計測・マッピングする。
論文 参考訳(メタデータ) (2024-07-03T05:19:45Z) - Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair [36.221761997349795]
ディープニューラルネットワークは、データセットバイアスの存在下でターゲットクラスと急激な相関を持つバイアス特性に依存している。
本稿では,本質的特徴の領域を示す空間的指示を明示的に提示する手法を提案する。
実験により, 種々のバイアス重大度を有する合成および実世界のデータセットに対して, 最先端の性能を達成できることが実証された。
論文 参考訳(メタデータ) (2024-04-30T04:13:14Z) - Learning Decomposable and Debiased Representations via Attribute-Centric Information Bottlenecks [21.813755593742858]
データセット内のターゲットラベルと突発的に相関するバイアス属性は、分類の不適切なショートカットを学習するニューラルネットワークに問題を引き起こす可能性がある。
本稿では,属性の合成表現を学習するための注目に基づく情報ボトルネックを導入し,新たなデバイアス化フレームワークであるデバイアスンググローバルワークスペースを提案する。
偏りのあるデータセットに対する包括的評価と定量的および定性的な分析を行い、アプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-21T05:33:49Z) - Common-Sense Bias Modeling for Classification Tasks [15.683471433842492]
テキスト記述に基づく画像データセットの包括的バイアスを抽出する新しい枠組みを提案する。
提案手法は,複数の画像ベンチマークデータセットにおける新しいモデルバイアスを明らかにする。
発見されたバイアスは、機能の非相関化のために、単純なデータ再重み付けによって緩和することができる。
論文 参考訳(メタデータ) (2024-01-24T03:56:07Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Analyzing Bias in Diffusion-based Face Generation Models [75.80072686374564]
拡散モデルは、合成データ生成と画像編集アプリケーションでますます人気がある。
本研究では, 性別, 人種, 年齢などの属性に関して, 拡散型顔生成モデルにおけるバイアスの存在について検討する。
本研究は,GAN(Generative Adversarial Network)とGAN(Generative Adversarial Network)をベースとした顔生成モデルにおいて,データセットサイズが属性組成および知覚品質に与える影響について検討する。
論文 参考訳(メタデータ) (2023-05-10T18:22:31Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Regularizing Models via Pointwise Mutual Information for Named Entity
Recognition [17.767466724342064]
ドメイン内での性能を向上しつつ、一般化能力を高めるために、PMI(Pointwise Mutual Information)を提案する。
提案手法により,ベンチマークデータセットの単語とラベルの相関度を高く抑えることができる。
長い名前と複雑な構造を持つエンティティに対して、これらのエンティティは協調的あるいは特別な文字の偏りによって予測できる。
論文 参考訳(メタデータ) (2021-04-15T05:47:27Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
本稿では,データセット固有のパターンを自動的に検出・無視する手法を提案する。
我々の方法は、より高い容量モデルでアンサンブルで低容量モデルを訓練する。
視覚的質問応答データセットの10ポイントゲインを含む,すべての設定の改善を示す。
論文 参考訳(メタデータ) (2020-11-07T22:20:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。