論文の概要: Dynamics of Structured Complex-Valued Hopfield Neural Networks
- arxiv url: http://arxiv.org/abs/2503.19885v1
- Date: Tue, 25 Mar 2025 17:49:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:52:48.435674
- Title: Dynamics of Structured Complex-Valued Hopfield Neural Networks
- Title(参考訳): 構造化複素値ホップフィールドニューラルネットワークのダイナミクス
- Authors: Rama Murthy Garimella, Marcos Eduardo Valle, Guilherme Vieira, Anil Rayala, Dileep Munugoti,
- Abstract要約: 構成ホップフィールドニューラルネットワーク (CvHNN) は, シナプス重み行列が特定の構造特性を持つ場合に生じることを示す。
複素数値行列の2つの新しいクラス、ブレイド・エルミート行列とブレイド・スキュー・エルミート行列を導入する。
この結果は、構造化されたCvHNNのダイナミクスを概観し、改善された連想記憶モデルの開発に寄与する可能性のある洞察を提供する。
- 参考スコア(独自算出の注目度): 0.31457219084519
- License:
- Abstract: In this paper, we explore the dynamics of structured complex-valued Hopfield neural networks (CvHNNs), which arise when the synaptic weight matrix possesses specific structural properties. We begin by analyzing CvHNNs with a Hermitian synaptic weight matrix and establish the existence of four-cycle dynamics in CvHNNs with skew-Hermitian weight matrices operating synchronously. Furthermore, we introduce two new classes of complex-valued matrices: braided Hermitian and braided skew-Hermitian matrices. We demonstrate that CvHNNs utilizing these matrix types exhibit cycles of length eight when operating in full parallel update mode. Finally, we conduct extensive computational experiments on synchronous CvHNNs, exploring other synaptic weight matrix structures. The findings provide a comprehensive overview of the dynamics of structured CvHNNs, offering insights that may contribute to developing improved associative memory models when integrated with suitable learning rules.
- Abstract(参考訳): 本稿では,合成重み行列が特定の構造特性を持つ場合に生じる,構造付き複素数値ホップフィールドニューラルネットワーク(CvHNN)のダイナミクスについて検討する。
まず,CvHNNをヘルミタンのシナプス重み行列で解析し,スキュー・ヘルミタンの重み行列を同期動作させたCvHNNにおける4サイクルダイナミックスの存在を確立する。
さらに、複素数値行列の2つの新しいクラス、ブレイド・エルミート行列とブレイド・スキュー・エルミート行列を導入する。
これらの行列型を用いたCvHNNは,全並列更新モードで動作する場合,長さ8のサイクルを示す。
最後に、同期CvHNNの計算実験を行い、他のシナプス重み行列構造を探索する。
この結果は、構造化CvHNNのダイナミクスを概観し、適切な学習ルールと統合した場合に、改善された連想記憶モデルの開発に寄与する可能性のある洞察を提供する。
関連論文リスト
- Theoretical characterisation of the Gauss-Newton conditioning in Neural Networks [5.851101657703105]
ニューラルネットワークにおけるガウスニュートン行列(GN)の条件付けを理論的に特徴付けるための第一歩を踏み出す。
我々は、任意の深さと幅の深い線形ネットワークにおいて、GNの条件数に厳密な境界を確立する。
残りの接続や畳み込み層といったアーキテクチャコンポーネントに分析を拡張します。
論文 参考訳(メタデータ) (2024-11-04T14:56:48Z) - Connectivity structure and dynamics of nonlinear recurrent neural networks [46.62658917638706]
我々は,ニューラルネットワークの高次元,内部的に発生する活動が接続構造をどのように形成するかを解析する理論を開発する。
我々の理論は、ニューラルネットワークアーキテクチャと人工および生物学的システムにおける集合力学を関連付けるためのツールを提供する。
論文 参考訳(メタデータ) (2024-09-03T15:08:37Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
本稿では, ニューラルネットワーク幅の上下境界を定義し, 問題となるデータセットのポリトープ構造から情報を得る。
本研究では,データセットのポリトープ構造を学習したニューラルネットワークから推定できる逆条件を探索するアルゴリズムを開発した。
MNIST、Fashion-MNIST、CIFAR10といった一般的なデータセットは、顔の少ない2つ以上のポリトップを用いて効率的にカプセル化できることが確立されている。
論文 参考訳(メタデータ) (2024-02-04T08:57:42Z) - Symmetry-enforcing neural networks with applications to constitutive modeling [0.0]
本研究では,非線形および履歴依存行動を示す複雑なミクロ構造を均質化するために,最先端のマイクロメカニカルモデリングと高度な機械学習技術を組み合わせる方法について述べる。
結果として得られるホモジェナイズドモデルであるスマート法則(SCL)は、従来の並列マルチスケールアプローチで必要とされる計算コストのごく一部で、マイクロインフォメーション法を有限要素ソルバに適用することができる。
本研究では、ニューロンレベルで物質対称性を強制する新しい方法論を導入することにより、SCLの機能を拡張する。
論文 参考訳(メタデータ) (2023-12-21T01:12:44Z) - Complex Recurrent Spectral Network [1.0499611180329806]
本稿では,複雑なリカレントスペクトルネットワーク(conplex Recurrent Spectral Network)(mathbbC$-RSN)の開発を通じて,人工知能(AI)を進化させる新しいアプローチを提案する。
$mathbbC$-RSNは、既存のニューラルネットワークモデルにおいて、生物学的ニューラルネットワークの複雑なプロセスをエミュレートできないという限界に対処するように設計されている。
論文 参考訳(メタデータ) (2023-12-12T14:14:40Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
本研究では,時空間パターンの各コンポーネントを個別にモデル化する適応的,解釈可能,スケーラブルな予測フレームワークを開発する。
SCNNは、空間時間パターンの潜在構造を算術的に特徴づける、MSSの事前定義された生成プロセスで動作する。
SCNNが3つの実世界のデータセットの最先端モデルよりも優れた性能を達成できることを示すため、大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-05-22T13:39:44Z) - Tensor-based Sequential Learning via Hankel Matrix Representation for
Next Item Recommendations [0.0]
自己注意型トランスフォーマーモデルは、次の項目の推薦タスクを非常に効率的に解くことが示されている。
学習パラメータ空間の特別な構造に動機付けられ、それに代わるより軽量なアプローチでそれを模倣できるかどうかを疑問視する。
学習プロセス内のシーケンシャルデータに関する構造的知識を生かしたテンソル分解に基づく新しいモデルを開発する。
論文 参考訳(メタデータ) (2022-12-12T05:55:40Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - An Ode to an ODE [78.97367880223254]
我々は、O(d) 群上の行列フローに応じて主フローの時間依存パラメータが進化する ODEtoODE と呼ばれるニューラルODE アルゴリズムの新しいパラダイムを提案する。
この2つの流れのネストされたシステムは、訓練の安定性と有効性を提供し、勾配の消滅・爆発問題を確実に解決する。
論文 参考訳(メタデータ) (2020-06-19T22:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。