"Is There Anything Else?'': Examining Administrator Influence on Linguistic Features from the Cookie Theft Picture Description Cognitive Test
- URL: http://arxiv.org/abs/2503.20104v1
- Date: Tue, 25 Mar 2025 23:01:15 GMT
- Title: "Is There Anything Else?'': Examining Administrator Influence on Linguistic Features from the Cookie Theft Picture Description Cognitive Test
- Authors: Changye Li, Zhecheng Sheng, Trevor Cohen, Serguei Pakhomov,
- Abstract summary: Alzheimer's Disease (AD) dementia is a progressive neurodegenerative disease that negatively impacts patients' cognitive ability.<n>The level of test administrator involvement significantly impacts observed linguistic features in patient speech.<n> variations in test administrator behavior can lead to systematic biases in linguistic data, potentially confounding research outcomes and clinical assessments.
- Score: 7.21603206617401
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Alzheimer's Disease (AD) dementia is a progressive neurodegenerative disease that negatively impacts patients' cognitive ability. Previous studies have demonstrated that changes in naturalistic language samples can be useful for early screening of AD dementia. However, the nature of language deficits often requires test administrators to use various speech elicitation techniques during spontaneous language assessments to obtain enough propositional utterances from dementia patients. This could lead to the ``observer's effect'' on the downstream analysis that has not been fully investigated. Our study seeks to quantify the influence of test administrators on linguistic features in dementia assessment with two English corpora the ``Cookie Theft'' picture description datasets collected at different locations and test administrators show different levels of administrator involvement. Our results show that the level of test administrator involvement significantly impacts observed linguistic features in patient speech. These results suggest that many of significant linguistic features in the downstream classification task may be partially attributable to differences in the test administration practices rather than solely to participants' cognitive status. The variations in test administrator behavior can lead to systematic biases in linguistic data, potentially confounding research outcomes and clinical assessments. Our study suggests that there is a need for a more standardized test administration protocol in the development of responsible clinical speech analytics frameworks.
Related papers
- DECT: Harnessing LLM-assisted Fine-Grained Linguistic Knowledge and Label-Switched and Label-Preserved Data Generation for Diagnosis of Alzheimer's Disease [13.38075448636078]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease affecting 50 million people worldwide.
Language impairment is one of the earliest signs of cognitive decline, which can be used to discriminate AD patients from normal control individuals.
Patient-interviewer dialogues may be used to detect such impairments, but they are often mixed with ambiguous, noisy, and irrelevant information.
arXiv Detail & Related papers (2025-02-06T04:00:25Z) - Not All Errors Are Equal: Investigation of Speech Recognition Errors in Alzheimer's Disease Detection [62.942077348224046]
Speech recognition plays an important role in automatic detection of Alzheimer's disease (AD)<n>Recent studies have revealed a non-linear relationship between word error rates (WER) and AD detection performance.<n>This work presents a series of analyses to explore the effect of ASR transcription errors in BERT-based AD detection systems.
arXiv Detail & Related papers (2024-12-09T09:32:20Z) - Devising a Set of Compact and Explainable Spoken Language Feature for Screening Alzheimer's Disease [52.46922921214341]
Alzheimer's disease (AD) has become one of the most significant health challenges in an aging society.<n>We devised an explainable and effective feature set that leverages the visual capabilities of a large language model (LLM) and the Term Frequency-Inverse Document Frequency (TF-IDF) model.<n>Our new features can be well explained and interpreted step by step which enhance the interpretability of automatic AD screening.
arXiv Detail & Related papers (2024-11-28T05:23:22Z) - Infusing Acoustic Pause Context into Text-Based Dementia Assessment [7.8642589679025034]
This work investigates the use of pause-enriched transcripts in language models to differentiate the cognitive states of subjects with no cognitive impairment, mild cognitive impairment, and Alzheimer's dementia based on their speech from a clinical assessment.
The performance is evaluated through experiments on a German Verbal Fluency Test and a Picture Description Test, comparing the model's effectiveness across different speech production contexts.
arXiv Detail & Related papers (2024-08-27T16:44:41Z) - Zero-Shot Multi-Lingual Speaker Verification in Clinical Trials [4.231937382464348]
In clinical trials, patients are assessed based on their speech data to detect and monitor cognitive and mental health disorders.
We propose using these speech recordings to verify the identities of enrolled patients and identify and exclude the individuals who try to enroll multiple times in the same trial.
We evaluate pre-trained TitaNet, ECAPA-TDNN, and SpeakerNet models by enrolling and testing with speech-impaired patients speaking English, German, Danish, Spanish, and Arabic languages.
arXiv Detail & Related papers (2024-04-02T14:19:30Z) - Comparing Hallucination Detection Metrics for Multilingual Generation [62.97224994631494]
This paper assesses how well various factual hallucination detection metrics identify hallucinations in generated biographical summaries across languages.
We compare how well automatic metrics correlate to each other and whether they agree with human judgments of factuality.
Our analysis reveals that while the lexical metrics are ineffective, NLI-based metrics perform well, correlating with human annotations in many settings and often outperforming supervised models.
arXiv Detail & Related papers (2024-02-16T08:10:34Z) - Identification of Cognitive Decline from Spoken Language through Feature
Selection and the Bag of Acoustic Words Model [0.0]
The early identification of symptoms of memory disorders plays a significant role in ensuring the well-being of populations.
The lack of standardized speech tests in clinical settings has led to a growing emphasis on developing automatic machine learning techniques for analyzing naturally spoken language.
The work presents an approach related to feature selection, allowing for the automatic selection of the essential features required for diagnosis from the Geneva minimalistic acoustic parameter set and relative speech pauses.
arXiv Detail & Related papers (2024-02-02T17:06:03Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
Assessment of speech performance using picture naming tasks is a key method for both diagnosis and monitoring of responses to treatment interventions by people with aphasia (PWA)
Here we present NUVA, an utterance verification system incorporating a deep learning element that classifies 'correct' versus'incorrect' naming attempts from aphasic stroke patients.
When tested on eight native British-English speaking PWA the system's performance accuracy ranged between 83.6% to 93.6%, with a 10-fold cross-validation mean of 89.5%.
arXiv Detail & Related papers (2021-02-10T13:00:29Z) - Predicting Early Indicators of Cognitive Decline from Verbal Utterances [2.387625146176821]
Dementia is a group of irreversible, chronic, and progressive neurodegenerative disorders resulting in impaired memory, communication, and thought processes.
We measure the feasibility of using the linguistic characteristics of verbal utterances elicited during neuropsychological exams to distinguish between elderly control groups, people with MCI, people diagnosed with possible Alzheimer's disease (AD), and probable AD.
Our experiments show that a combination of contextual and psycholinguistic features extracted by a Support Vector Machine improved distinguishing the verbal utterances of elderly controls, people with MCI, possible AD, and probable AD.
arXiv Detail & Related papers (2020-11-19T02:24:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.