論文の概要: Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
- arxiv url: http://arxiv.org/abs/2503.20294v1
- Date: Wed, 26 Mar 2025 07:35:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:21:58.274264
- Title: Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
- Title(参考訳): SAMリファインメントを用いたコンテキスト認識弱補正画像操作位置推定
- Authors: Xinghao Wang, Changtao Miao, Dianmo Sheng, Tao Gong, Qi Chu, Bin Liu, Nenghai Yu,
- Abstract要約: 悪意のある画像操作は社会的リスクを生じさせ、効果的な画像操作検出方法の重要性を高めている。
画像操作検出の最近のアプローチは、完全に教師されたアプローチによって大きく推進されている。
本稿では,デュアルブランチトランスフォーマー-CNNアーキテクチャに基づく,弱教師付きフレームワークを提案する。
- 参考スコア(独自算出の注目度): 49.93551964327894
- License:
- Abstract: Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
- Abstract(参考訳): 悪意のある画像操作は社会的リスクを生じさせ、効果的な画像操作検出方法の重要性を高めている。
画像操作検出の最近のアプローチは、主に、労働集約的なピクセルレベルのアノテーションを必要とする、完全に教師されたアプローチによって進められている。
したがって、画像レベルのバイナリラベルのみを必要とする、弱教師付き画像操作のローカライゼーション手法を検討することが不可欠である。
しかし、既存の弱教師付き画像操作手法は、正確な局所化のためのエッジ情報の重要性を無視し、最適下位置化性能をもたらす。
そこで本稿では,境界特徴を集約するコンテキスト認識境界局所化(CABL)モジュールを提案し,操作対象領域の局所化のためのコンテキスト不整合を学習する。
さらに,CAM(Class Activation Mapping)とSAM(Segment Anything Model)を活用することで,より正確な位置化マップを生成するためにCGSR(CAM-Guided SAM Refinement)モジュールを導入する。
2つのモジュールを統合することで、デュアルブランチトランスフォーマー-CNNアーキテクチャに基づいた、より弱い教師付きフレームワークを提案する。
提案手法は,複数のデータセットにまたがる優れたローカライゼーション性能を実現する。
関連論文リスト
- Mixture-of-Noises Enhanced Forgery-Aware Predictor for Multi-Face Manipulation Detection and Localization [52.87635234206178]
本稿では,多面的操作検出と局所化に適したMoNFAPという新しいフレームワークを提案する。
このフレームワークには2つの新しいモジュールが含まれている: Forgery-aware Unified Predictor (FUP) Module と Mixture-of-Noises Module (MNM)。
論文 参考訳(メタデータ) (2024-08-05T08:35:59Z) - Skeleton-Guided Instance Separation for Fine-Grained Segmentation in
Microscopy [23.848474219551818]
顕微鏡(MS)画像解析における基本的な課題の1つは、インスタンスセグメンテーション(IS)である。
我々は,この課題に対処し,MS画像におけるISの精度を高めるために,A2B-ISという新しいワンステージフレームワークを提案する。
提案手法は2つの大規模MSデータセットに対して徹底的に検証されている。
論文 参考訳(メタデータ) (2024-01-18T11:14:32Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
デジタル画像法医学は、画像認証と操作のローカライゼーションにおいて重要な役割を果たす。
本稿では,画素不整合アーチファクトの解析を通じて,一般化されたロバストな操作ローカライゼーションモデルを提案する。
実験により,本手法は固有の画素不整合偽指紋を抽出することに成功した。
論文 参考訳(メタデータ) (2023-09-30T02:54:51Z) - Background Activation Suppression for Weakly Supervised Object
Localization and Semantic Segmentation [84.62067728093358]
弱教師付きオブジェクトローカライゼーションとセマンティックセグメンテーションは、画像レベルのラベルのみを使用してオブジェクトをローカライズすることを目的としている。
画素レベルのローカライゼーションを実現するために,フォアグラウンド予測マップを生成することで,新たなパラダイムが誕生した。
本稿では,物体の局在化学習過程に関する2つの驚くべき実験結果を示す。
論文 参考訳(メタデータ) (2023-09-22T15:44:10Z) - Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning [61.5469708038966]
本稿では,効果的な画像操作検出のためのコントラスト学習(PCL)を提案する。
我々のPCLは、RGBとノイズビューから2種類のグローバル特徴を抽出し、2ストリームアーキテクチャで構成されている。
我々のPCLは、実際にラベル付けされていないデータに容易に適用でき、手作業によるラベル付けコストを削減し、より一般化可能な機能を促進することができる。
論文 参考訳(メタデータ) (2022-10-16T13:30:13Z) - Spatially Consistent Representation Learning [12.120041613482558]
本研究では,空間的に一貫した表現学習アルゴリズム(SCRL)を提案する。
ランダムに切り抜かれた局所領域のコヒーレントな空間表現を作ろうとする新しい自己教師付き目的を考案する。
ベンチマークデータセットを用いた下流のローカライゼーションタスクでは、提案したSCRLは大幅な性能改善を示す。
論文 参考訳(メタデータ) (2021-03-10T15:23:45Z) - Self-supervised Equivariant Attention Mechanism for Weakly Supervised
Semantic Segmentation [93.83369981759996]
本稿では,自己監督同変注意機構(SEAM)を提案する。
本手法は,完全教師付きセマンティックセグメンテーションにおいて,同値が暗黙の制約であることを示す。
本稿では,ネットワーク学習のための自己スーパービジョンを提供するために,様々な変換画像から予測されたCAMの整合性正則化を提案する。
論文 参考訳(メタデータ) (2020-04-09T14:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。