論文の概要: Learning Straight Flows by Learning Curved Interpolants
- arxiv url: http://arxiv.org/abs/2503.20719v1
- Date: Wed, 26 Mar 2025 16:54:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 13:18:09.186938
- Title: Learning Straight Flows by Learning Curved Interpolants
- Title(参考訳): 曲線補間子学習による直線流の学習
- Authors: Shiv Shankar, Tomas Geffner,
- Abstract要約: フローマッチングモデルは通常、フォワード/ノイズ加算プロセスを定義するために線形補間を用いる。
これにより、雑音と対象分布の独立結合とともに、しばしば非直線となるベクトル場が得られる。
直進ベクトル場を学習し、より高速な生成を実現するために、フレキシブルな(潜在的に湾曲した)補間子を学習することを提案する。
- 参考スコア(独自算出の注目度): 19.42604535211923
- License:
- Abstract: Flow matching models typically use linear interpolants to define the forward/noise addition process. This, together with the independent coupling between noise and target distributions, yields a vector field which is often non-straight. Such curved fields lead to a slow inference/generation process. In this work, we propose to learn flexible (potentially curved) interpolants in order to learn straight vector fields to enable faster generation. We formulate this via a multi-level optimization problem and propose an efficient approximate procedure to solve it. Our framework provides an end-to-end and simulation-free optimization procedure, which can be leveraged to learn straight line generative trajectories.
- Abstract(参考訳): フローマッチングモデルは通常、フォワード/ノイズ加算プロセスを定義するために線形補間を用いる。
これにより、雑音と対象分布の独立結合とともに、しばしば非直線となるベクトル場が得られる。
このような曲面は推論/生成過程を遅くする。
本研究では,直線ベクトル場を学習し,より高速な生成を実現するために,柔軟な(潜在的に湾曲した)補間子を学習することを提案する。
マルチレベル最適化問題を用いてこれを定式化し、その解法を効率的に近似する手法を提案する。
我々のフレームワークはエンドツーエンドでシミュレーション不要な最適化手法を提供しており、直線生成軌道の学習に利用することができる。
関連論文リスト
- Flow Matching: Markov Kernels, Stochastic Processes and Transport Plans [1.9766522384767222]
フローマッチング技術は、逆問題の解決に利用できる。
逆問題の解法として,フローマッチングが有効であることを示す。
本稿では,連続正規化フローとスコアマッチング手法について簡潔に述べる。
論文 参考訳(メタデータ) (2025-01-28T10:28:17Z) - Optimal Flow Matching: Learning Straight Trajectories in Just One Step [89.37027530300617]
我々は,新しいtextbf Optimal Flow Matching (OFM) アプローチを開発し,理論的に正当化する。
これは2次輸送のための直列のOT変位をFMの1ステップで回復することを可能にする。
提案手法の主な考え方は,凸関数によってパラメータ化されるFMのベクトル場の利用である。
論文 参考訳(メタデータ) (2024-03-19T19:44:54Z) - Dirichlet Flow Matching with Applications to DNA Sequence Design [37.12809686044779]
確率経路としてのディリクレ分布の混合に基づいて, 単純度に基づくディリクレフローマッチングを開発する。
蒸留したディリクレフローマッチングにより,最小性能で一段階のシーケンス生成が可能となる。
論文 参考訳(メタデータ) (2024-02-08T17:18:01Z) - The Curse of Unrolling: Rate of Differentiating Through Optimization [35.327233435055305]
未分化は反復解法を用いて解を近似し、計算経路を通して解を微分する。
我々は,(1)高速収束につながる大きな学習率を選択することができるが,アルゴリズムが任意に長いバーンインフェーズを持つことを受け入れるか,あるいは(2)即時収束につながるより少ない学習率を選択するかのどちらかを示す。
論文 参考訳(メタデータ) (2022-09-27T09:27:29Z) - Flow Straight and Fast: Learning to Generate and Transfer Data with
Rectified Flow [32.459587479351846]
我々は、(神経)常微分方程式(ODE)モデルを学ぶための驚くほど単純なアプローチである整流流を提示する。
補正フローは画像生成,画像から画像への変換,ドメイン適応に優しく作用することを示す。
論文 参考訳(メタデータ) (2022-09-07T08:59:55Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Self Normalizing Flows [65.73510214694987]
本稿では,各層における学習された近似逆数により,勾配の高価な項を置き換えることで,フローの正規化を訓練するための柔軟なフレームワークを提案する。
これにより、各レイヤの正確な更新の計算複雑性が$mathcalO(D3)$から$mathcalO(D2)$に削減される。
実験により,これらのモデルは非常に安定であり,正確な勾配値と類似したデータ可能性値に最適化可能であることが示された。
論文 参考訳(メタデータ) (2020-11-14T09:51:51Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
我々は、堅牢性を改善し、解法収束を高速化するために学習可能な最適化を採用する。
まず、CNNを通じてエンドツーエンドに学習された深い特徴にアライメントデータ項を統合することにより、追跡対象をアップグレードする。
次に,プレコンディショニング手法と学習手法のギャップを,プレコンディショナを生成するためにトレーニングされたConditionNetを導入することで埋める。
論文 参考訳(メタデータ) (2020-03-27T04:40:57Z) - Learning with Differentiable Perturbed Optimizers [54.351317101356614]
本稿では,操作を微分可能で局所的に一定ではない操作に変換する手法を提案する。
提案手法は摂動に依拠し,既存の解法とともに容易に利用することができる。
本稿では,この枠組みが,構造化予測において発達した損失の族とどのように結びつくかを示し,学習課題におけるそれらの使用に関する理論的保証を与える。
論文 参考訳(メタデータ) (2020-02-20T11:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。