論文の概要: Data-Driven Extreme Response Estimation
- arxiv url: http://arxiv.org/abs/2503.21638v1
- Date: Thu, 27 Mar 2025 16:03:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-28 18:49:11.597722
- Title: Data-Driven Extreme Response Estimation
- Title(参考訳): データ駆動極端応答推定
- Authors: Samuel J. Edwards, Michael D. Levine,
- Abstract要約: 本報告では, 極端船舶の応答事象を迅速に推定する手法を開発した。
この方法は、低忠実度流体力学モデルを高忠実度シミュレーションのレベルに補正するために、LSTM(Long Short-Term Memory)ニューラルネットワークによるトレーニングを含む。
ピークイベントの近くに時系列を分離し、大きなイベント周辺の短い時系列のみをトレーニングすることで、より大きなレスポンスにもっとフォーカスする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A method to rapidly estimate extreme ship response events is developed in this paper. The method involves training by a Long Short-Term Memory (LSTM) neural network to correct a lower-fidelity hydrodynamic model to the level of a higher-fidelity simulation. More focus is placed on larger responses by isolating the time-series near peak events identified in the lower-fidelity simulations and training on only the shorter time-series around the large event. The method is tested on the estimation of pitch time-series maxima in Sea State 5 (significant wave height of 4.0 meters and modal period of 15.0 seconds,) generated by a lower-fidelity hydrodynamic solver known as SimpleCode and a higher-fidelity tool known as the Large Amplitude Motion Program (LAMP). The results are also compared with an LSTM trained without special considerations for large events.
- Abstract(参考訳): 本報告では, 極端船舶の応答事象を迅速に推定する手法を開発した。
この方法は、低忠実度流体力学モデルを高忠実度シミュレーションのレベルに補正するために、LSTM(Long Short-Term Memory)ニューラルネットワークによるトレーニングを含む。
低忠実度シミュレーションで同定されたピーク事象の近傍で時系列を分離し、大事象周辺の短い時系列のみのトレーニングを行うことにより、より大きな応答により多くの焦点をあてる。
本手法は, 音高4.0m, モーダル周期15.0秒) におけるピッチ時間列最大値の推定をSimpleCodeとLAMP(Large Amplitude Motion Program)と呼ばれる高忠実度ツールを用いて行った。
また,大規模なイベントに対する特別な配慮なしにトレーニングしたLSTMと比較した。
関連論文リスト
- Event Signal Filtering via Probability Flux Estimation [58.31652473933809]
イベントは、非同期センシングを通じてシーンダイナミクスをキャプチャするための新しいパラダイムを提供するが、その固有のランダム性は、しばしば劣化した信号品質につながる。
したがって、イベント信号フィルタリングは、この内部ランダム性を低減し、多様な取得条件をまたいだ一貫した出力を確保することで、忠実性を高めるために不可欠である。
本稿ではイベント密度フローフィルタ(EDFilter)と呼ばれる生成オンラインフィルタリングフレームワークを紹介する。
実験では、イベントフィルタリング、スーパーレゾリューション、イベントベースの直接追跡といったタスクでEDFilterのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2025-04-10T07:03:08Z) - Density-Regression: Efficient and Distance-Aware Deep Regressor for
Uncertainty Estimation under Distribution Shifts [11.048463491646993]
密度回帰は不確実性推定において密度関数を利用する手法であり、単一の前方通過による高速な推論を実現する。
本研究では,現代の深部回帰器を用いた分布シフトにおいて,密度回帰が競合不確実性評価性能を有することを示す。
論文 参考訳(メタデータ) (2024-03-07T23:20:34Z) - Federated Quantum Long Short-term Memory (FedQLSTM) [58.50321380769256]
量子フェデレーション学習(QFL)は、量子機械学習(QML)モデルを使用して、複数のクライアント間の協調学習を容易にする。
関数の近似に時間的データを利用するQFLフレームワークの開発に前向きな作業は行われていない。
量子長短期メモリ(QLSTM)モデルと時間データを統合する新しいQFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-21T21:40:47Z) - Rapid Flood Inundation Forecast Using Fourier Neural Operator [77.30160833875513]
洪水浸水予測は洪水前後の緊急計画に重要な情報を提供する。
近年,高分解能な流体力学モデリングが普及しつつあるが,道路の洪水範囲やリアルタイムのビルディングレベルは依然として計算的に要求されている。
洪水範囲と浸水深度予測のためのハイブリッドプロセスベースおよびデータ駆動機械学習(ML)アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-29T22:49:50Z) - Operator Guidance Informed by AI-Augmented Simulations [0.0]
本稿では,Long Short-Term Memory (LSTM) ニューラルネットワークを用いた多要素データ適応型手法を提案する。
この研究には、高速で低忠実なボリュームベースツールSimpleCodeと、Large Amplitude Motion Program(LAMP)と呼ばれる高忠実なツールが使用される。
論文 参考訳(メタデータ) (2023-07-17T19:56:09Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
ニューラルネットワークを用いた位相分解波面再構成のための新しい手法を提案する。
提案手法は,一次元格子を用いた合成的かつ高精度な訓練データを利用する。
論文 参考訳(メタデータ) (2023-05-18T12:30:26Z) - Data-driven and machine-learning based prediction of wave propagation
behavior in dam-break flood [11.416877401689735]
最小限のデータ量で十分にトレーニングされた機械学習モデルは,1次元ダム破壊洪水の長期的動的挙動を良好な精度で予測する上で有効であることを示す。
我々は,0.01未満の根平均二乗誤差 (RMSE) でダム破砕洪水の波動伝播挙動を286回予測するRC-ESNモデルの優れた予測能力を実証した。
論文 参考訳(メタデータ) (2022-09-19T02:58:31Z) - A Data Driven Method for Multi-step Prediction of Ship Roll Motion in
High Sea States [15.840386459188169]
本稿では, 海上における船の転がり動作の多段階予測を実現するための新しいデータ駆動手法を提案する。
ConvLSPTMNetと呼ばれるハイブリッドニューラルネットワークは、長い短期記憶(LSTM)と1次元畳み込みニューラルネットワーク(CNN)を実行するために提案されている。
その結果, ロール動作の多段階予測において, ConvNetはLSTM法やCNN法よりも精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-07-26T06:26:00Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - End-to-end LSTM based estimation of volcano event epicenter localization [55.60116686945561]
火山イベントの局所化問題に対処するために, エンドツーエンドのLSTMスキームを提案する。
LSTMは、時間変化の信号のダイナミクスを捉えることができるため、選択された。
その結果、LSTMベースのアーキテクチャは成功率、すなわち1.0Km未満のエラーが48.5%に等しいことを示した。
論文 参考訳(メタデータ) (2021-10-27T17:11:33Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z) - Recurrent convolutional neural network for the surrogate modeling of
subsurface flow simulation [0.0]
本稿では,数値フローシミュレーションの代理モデルとして,SegNetとConvLSTM層を組み合わせることを提案する。
その結果,シミュレーションの出力が時系列データである場合,SegNetに基づくサロゲートモデルの性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2020-10-08T09:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。