論文の概要: Flexible Moment-Invariant Bases from Irreducible Tensors
- arxiv url: http://arxiv.org/abs/2503.21939v1
- Date: Thu, 27 Mar 2025 19:35:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:29:51.794349
- Title: Flexible Moment-Invariant Bases from Irreducible Tensors
- Title(参考訳): 既約テンソルからのフレキシブルモーメント不変基底
- Authors: Roxana Bujack, Emily Shinkle, Alice Allen, Tomas Suk, Nicholas Lubbers,
- Abstract要約: 不変量の集合は、それが入力の退化に対して完全で独立で堅牢であれば最適である。
2つの一般的なモーメント不変のアプローチを組み合わせることで、この脆弱性を克服する方法を示す。
- 参考スコア(独自算出の注目度): 0.8248781893273871
- License:
- Abstract: Moment invariants are a powerful tool for the generation of rotation-invariant descriptors needed for many applications in pattern detection, classification, and machine learning. A set of invariants is optimal if it is complete, independent, and robust against degeneracy in the input. In this paper, we show that the current state of the art for the generation of these bases of moment invariants, despite being robust against moment tensors being identically zero, is vulnerable to a degeneracy that is common in real-world applications, namely spherical functions. We show how to overcome this vulnerability by combining two popular moment invariant approaches: one based on spherical harmonics and one based on Cartesian tensor algebra.
- Abstract(参考訳): モーメント不変は、パターン検出、分類、機械学習において多くのアプリケーションに必要な回転不変記述子を生成する強力なツールである。
不変量の集合は、それが入力の退化に対して完全で独立で堅牢であれば最適である。
本稿では、モーメントテンソルが同じゼロであるにもかかわらず、これらのモーメント不変量の生成における現在の最先端技術は、実世界の応用、すなわち球面関数に共通する縮退に対して脆弱であることを示す。
我々は、この脆弱性を2つの一般的なモーメント不変のアプローチ(球面調和に基づくもの)と、カルトテンソル代数に基づくものを組み合わせることで克服する方法を示す。
関連論文リスト
- Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation [71.69331824668954]
スペクトル変動は、ハイパースペクトル画像(HSI)解析において共通の課題となる
低ランクテンソル表現は、HSIデータに固有の相関を利用して、堅牢な戦略として登場した。
本研究では,不規則な3次元立方体を効率的にモデル化するために,不規則なテンソルローランク表現のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2024-10-24T02:56:22Z) - SymDiff: Equivariant Diffusion via Stochastic Symmetrisation [28.614292092399563]
対称性の枠組みを用いた同変拡散モデル構築手法であるSymDiffを提案する。
SymDiffは、サンプリング時にデプロイされる学習データ拡張に似ており、軽量で、計算効率が高く、任意のオフザシェルフモデル上に実装が容易である。
論文 参考訳(メタデータ) (2024-10-08T18:02:29Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
我々は,PCAが信号の大きさの臨界値で計算的に困難になることを示す。
我々は、与えられた次数の不変量に対して明示的でほぼ直交的な基底を与える新しい対象の集合を定義する。
また、異なるアンサンブルを区別する新しい問題も分析できます。
論文 参考訳(メタデータ) (2024-04-29T14:33:24Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - Sufficient Invariant Learning for Distribution Shift [20.88069274935592]
本稿では,SIL(Sufficient Invariant Learning)フレームワークという新しい学習原理を紹介する。
SILは、単一の機能に頼るのではなく、不変機能の十分なサブセットを学ぶことに重点を置いている。
本稿では,適応シャープネスを意識したグループ分散ロバスト最適化(ASGDRO)を提案する。
論文 参考訳(メタデータ) (2022-10-24T18:34:24Z) - Group-invariant tensor train networks for supervised learning [0.0]
正規行列表現の作用の下で不変なテンソルの基底を構成するための新しい数値アルゴリズムを導入する。
その後、グループ不変テンソルをグループ不変テンソルトレインネットワークに結合し、教師付き機械学習モデルとして使用することができる。
論文 参考訳(メタデータ) (2022-06-30T06:33:08Z) - Unified Fourier-based Kernel and Nonlinearity Design for Equivariant
Networks on Homogeneous Spaces [52.424621227687894]
等質空間上の群同変ネットワークに対する統一的枠組みを導入する。
昇降した特徴場のフーリエ係数の空間性を利用する。
安定化部分群におけるフーリエ係数としての特徴を取り扱う他の方法が、我々のアクティベーションの特別な場合であることを示す。
論文 参考訳(メタデータ) (2022-06-16T17:59:01Z) - Low Dimensional Invariant Embeddings for Universal Geometric Learning [6.405957390409045]
本稿では、適切な群作用に不変で、どの軌道を分離するかという、不変量:$D$次元領域上の写像について研究する。
この研究の動機は、同変ニューラルネットワークアーキテクチャの普遍性を証明するために不変量を分離することの有用性にある。
論文 参考訳(メタデータ) (2022-05-05T22:56:19Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
フレーム平均化(FA)は、既知の(バックボーン)アーキテクチャを新しい対称性タイプに不変あるいは同変に適応するためのフレームワークである。
FAモデルが最大表現力を持つことを示す。
我々は,新しいユニバーサルグラフニューラルネット(GNN),ユニバーサルユークリッド運動不変点クラウドネットワーク,およびユークリッド運動不変メッセージパッシング(MP)GNNを提案する。
論文 参考訳(メタデータ) (2021-10-07T11:05:23Z) - LieTransformer: Equivariant self-attention for Lie Groups [49.9625160479096]
群等価ニューラルネットワークは群不変ニューラルネットワークの構成要素として用いられる。
我々は、文学の範囲を、ディープラーニングモデルの顕著な構築ブロックとして現れつつある自己注意にまで広げる。
任意のリー群とその離散部分群に同値なリー自己結合層からなる構造であるリー変換器を提案する。
論文 参考訳(メタデータ) (2020-12-20T11:02:49Z) - Convergence of a Stochastic Gradient Method with Momentum for Non-Smooth
Non-Convex Optimization [25.680334940504405]
本稿では,制約問題に対する運動量を持つ非滑らかな過渡法の割合の収束性を確立する。
問題としては、制約のないケースが、最先端技術よりも弱い仮定の下でどのように分析できるかを示す。
論文 参考訳(メタデータ) (2020-02-13T12:10:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。