論文の概要: Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
- arxiv url: http://arxiv.org/abs/2211.07482v3
- Date: Wed, 22 May 2024 03:40:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 21:51:50.628911
- Title: Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
- Title(参考訳): テンソルネットワーク形式を用いたO(3)等価ニューラルネットワークの設計
- Authors: Zimu Li, Zihan Pengmei, Han Zheng, Erik Thiede, Junyu Liu, Risi Kondor,
- Abstract要約: 本稿では,SU($2$)対称量子多体問題のシミュレーションに広く用いられている融合図を用いて,同変ニューラルネットワークのための新しい同変成分を設計する手法を提案する。
与えられた局所近傍の粒子に適用すると、結果として得られる成分は「融合ブロック」と呼ばれ、任意の連続同変関数の普遍近似として機能する。
我々のアプローチは、テンソルネットワークと同変ニューラルネットワークを組み合わせることで、より表現力のある同変ニューラルネットワークを設計するための有益な方向を示唆している。
- 参考スコア(独自算出の注目度): 12.008737454250463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many learning tasks, including learning potential energy surfaces from ab initio calculations, involve global spatial symmetries and permutational symmetry between atoms or general particles. Equivariant graph neural networks are a standard approach to such problems, with one of the most successful methods employing tensor products between various tensors that transform under the spatial group. However, as the number of different tensors and the complexity of relationships between them increase, maintaining parsimony and equivariance becomes increasingly challenging. In this paper, we propose using fusion diagrams, a technique widely employed in simulating SU($2$)-symmetric quantum many-body problems, to design new equivariant components for equivariant neural networks. This results in a diagrammatic approach to constructing novel neural network architectures. When applied to particles within a given local neighborhood, the resulting components, which we term "fusion blocks," serve as universal approximators of any continuous equivariant function defined in the neighborhood. We incorporate a fusion block into pre-existing equivariant architectures (Cormorant and MACE), leading to improved performance with fewer parameters on a range of challenging chemical problems. Furthermore, we apply group-equivariant neural networks to study non-adiabatic molecular dynamics of stilbene cis-trans isomerization. Our approach, which combines tensor networks with equivariant neural networks, suggests a potentially fruitful direction for designing more expressive equivariant neural networks.
- Abstract(参考訳): アブイニシアト計算からのポテンシャルエネルギー表面の学習を含む多くの学習タスクは、大域的な空間対称性と原子または一般粒子間の置換対称性を含む。
等変グラフニューラルネットワークはそのような問題に対する標準的なアプローチであり、空間群の下で変換される様々なテンソル間のテンソル積を利用する最も成功した手法の1つである。
しかし、異なるテンソルの数とそれらの間の関係の複雑さが増すにつれて、パシモニーと等価性の維持がますます困難になる。
本稿では,SU($2$)-対称量子多体問題のシミュレートに広く用いられている融合図を用いて,同変ニューラルネットワークのための新しい同変成分を設計する手法を提案する。
これにより、新しいニューラルネットワークアーキテクチャを構築するための図式的なアプローチが実現される。
与えられた局所近傍の粒子に適用すると、結果として得られる成分は「融合ブロック」と呼ばれ、その近傍で定義される任意の連続同変関数の普遍近似となる。
核融合ブロックを既存の同変アーキテクチャ(Cormorant と MACE)に組み込むことで、より少ないパラメータで性能を向上させることができる。
さらに、Stilbene cis-trans異性化の非断熱的分子動力学の研究に、グループ同変ニューラルネットワークを適用した。
我々のアプローチは、テンソルネットワークと同変ニューラルネットワークを組み合わせることで、より表現力のある同変ニューラルネットワークを設計するための有益な方向を示唆している。
関連論文リスト
- Relaxing Continuous Constraints of Equivariant Graph Neural Networks for Physical Dynamics Learning [39.25135680793105]
離散同変グラフニューラルネットワーク(DEGNN)を提案する。
具体的には、幾何学的特徴を置換不変な埋め込みに変換することによって、このような離散同変メッセージパッシングを構築することができることを示す。
DEGNNはデータ効率が良く、少ないデータで学習でき、観測不能な向きなどのシナリオをまたいで一般化できることを示す。
論文 参考訳(メタデータ) (2024-06-24T03:37:51Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Spatial Attention Kinetic Networks with E(n)-Equivariance [0.951828574518325]
回転、翻訳、反射、n次元幾何学空間上の置換と等価なニューラルネットワークは、物理モデリングにおいて有望であることを示している。
本稿では, エッジベクトルの線形結合をニューラルネットワークでパラメトリケートし, 等価性を実現するための, 簡易な代替関数形式を提案する。
E(n)-等価性を持つ空間的注意運動ネットワーク(SAKE)を設計する。
論文 参考訳(メタデータ) (2023-01-21T05:14:29Z) - Interrelation of equivariant Gaussian processes and convolutional neural
networks [77.34726150561087]
現在、ニューラルネットワーク(NN)とガウス過程(GP)の関係に基づく機械学習(ML)には、かなり有望な新しい傾向がある。
本研究では、ベクトル値のニューロン活性化を持つ2次元ユークリッド群とそれに対応する独立に導入された同変ガウス過程(GP)との関係を確立する。
論文 参考訳(メタデータ) (2022-09-17T17:02:35Z) - Generalization capabilities of neural networks in lattice applications [0.0]
翻訳等変ニューラルネットワークを用いた非同変ニューラルネットワークの利点について検討する。
我々の最良の同変アーキテクチャは、その非同変アーキテクチャよりも大幅に性能を向上し、一般化できることが示される。
論文 参考訳(メタデータ) (2021-12-23T11:48:06Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
変換不変および距離保存初期表現は変換不変性を達成するのに十分であることを示す。
具体的には、多次元スケーリングを変更することで、変換不変かつ距離保存された初期点表現を実現する。
我々は、TinvNNが変換不変性を厳密に保証し、既存のニューラルネットワークと組み合わせられるほど汎用的で柔軟なことを証明した。
論文 参考訳(メタデータ) (2021-12-23T03:52:33Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) は、新しい同変層と関連するスカラー化およびベクトル化層に基づいて構築されている。
シミュレーションされたニュートン力学系の軌跡を全観測データと部分観測データで予測する手法について検討した。
論文 参考訳(メタデータ) (2021-10-26T14:26:25Z) - UNiTE: Unitary N-body Tensor Equivariant Network with Applications to
Quantum Chemistry [33.067344811580604]
一般の対称テンソルに対するユニタリ$N$ボディテンソル同変ニューラルネットワーク(UNiTE)を提案する。
UNiTE は、3次元回転群のようなユニタリ群の作用に関して同変である。
量子化学に適用すると、UNiTEは最先端の機械学習手法をすべて上回っている。
論文 参考訳(メタデータ) (2021-05-31T00:48:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。