論文の概要: Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation
- arxiv url: http://arxiv.org/abs/2410.18388v2
- Date: Sat, 15 Feb 2025 13:44:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:04:29.694946
- Title: Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation
- Title(参考訳): ハイパースペクトル画像表現のための不規則なテンソル低ランク表現
- Authors: Bo Han, Yuheng Jia, Hui Liu, Junhui Hou,
- Abstract要約: スペクトル変動は、ハイパースペクトル画像(HSI)解析において共通の課題となる
低ランクテンソル表現は、HSIデータに固有の相関を利用して、堅牢な戦略として登場した。
本研究では,不規則な3次元立方体を効率的にモデル化するために,不規則なテンソルローランク表現のための新しいモデルを提案する。
- 参考スコア(独自算出の注目度): 71.69331824668954
- License:
- Abstract: Spectral variations pose a common challenge in analyzing hyperspectral images (HSI). To address this, low-rank tensor representation has emerged as a robust strategy, leveraging inherent correlations within HSI data. However, the spatial distribution of ground objects in HSIs is inherently irregular, existing naturally in tensor format, with numerous class-specific regions manifesting as irregular tensors. Current low-rank representation techniques are designed for regular tensor structures and overlook this fundamental irregularity in real-world HSIs, leading to performance limitations. To tackle this issue, we propose a novel model for irregular tensor low-rank representation tailored to efficiently model irregular 3D cubes. By incorporating a non-convex nuclear norm to promote low-rankness and integrating a global negative low-rank term to enhance the discriminative ability, our proposed model is formulated as a convex-concave optimization problem and solved using an alternative augmented Lagrangian method. Experimental validation conducted on four public datasets demonstrates the superior performance of our method compared to existing state-of-the-art approaches. The code is publicly available at https://github.com/hb-studying/ITLRR.
- Abstract(参考訳): スペクトル変動は、ハイパースペクトル画像(HSI)の解析において共通の課題となる。
これを解決するために、低ランクテンソル表現は、HSIデータに固有の相関を利用して、堅牢な戦略として登場した。
しかし、HSIsにおける接地対象の空間分布は本質的に不規則であり、自然にテンソル形式に存在し、多くのクラス固有の領域が不規則テンソルとして表される。
現在の低ランク表現技術は、通常のテンソル構造のために設計されており、実世界のHSIの基本的な不規則性を見落とし、性能の制限につながっている。
この問題に対処するために,不規則な3次元立方体を効率的にモデル化するための,不規則なテンソル低ランク表現のための新しいモデルを提案する。
低ランク化を促進するために非凸核ノルムを導入し、識別能力を高めるためにグローバルな負の低ランク項を統合することにより、提案モデルは凸凹最適化問題として定式化され、代替のラグランジアン法を用いて解決される。
4つの公開データセットで行った実験による検証は,既存の最先端手法と比較して,提案手法の優れた性能を示す。
コードはhttps://github.com/hb-studying/ITLRRで公開されている。
関連論文リスト
- Low-Rank Tensor Completion via Novel Sparsity-Inducing Regularizers [30.920908325825668]
低ランクテンソル完備化問題において、l1-ノルムを緩和するため、非ランクサロゲート/正則化器が提案されている。
これらの正則化器は核ランク復元に適用され,乗算器法に基づく効率的なアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2023-10-10T01:00:13Z) - Spectral Enhanced Rectangle Transformer for Hyperspectral Image
Denoising [64.11157141177208]
ハイパースペクトル画像の空間的およびスペクトル的相関をモデル化するスペクトル拡張矩形変換器を提案する。
前者に対しては、長方形自己アテンションを水平および垂直に利用し、空間領域における非局所的類似性を捉える。
後者のために,空間スペクトル立方体の大域的低ランク特性を抽出し,雑音を抑制するスペクトル拡張モジュールを設計する。
論文 参考訳(メタデータ) (2023-04-03T09:42:13Z) - Low-Rank Tensor Function Representation for Multi-Dimensional Data
Recovery [52.21846313876592]
低ランクテンソル関数表現(LRTFR)は、無限解像度でメッシュグリッドを超えてデータを連続的に表現することができる。
テンソル関数に対する2つの基本的な概念、すなわちテンソル関数ランクとローランクテンソル関数分解を開発する。
提案手法は,最先端手法と比較して,提案手法の優越性と汎用性を裏付けるものである。
論文 参考訳(メタデータ) (2022-12-01T04:00:38Z) - Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse
Separation with Spatial-Spectral Total Variation Regularization [49.55649406434796]
本研究では,HSI復調のためのロバストな主成分分析のための新しい非特異なアプローチを提案する。
我々は、ランクとスパースコンポーネントの両方に対する正確な近似を開発する。
シミュレーションと実HSIの両方の実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-01-08T11:48:46Z) - Hyperspectral Mixed Noise Removal via Subspace Representation and
Weighted Low-rank Tensor Regularization [10.131033322742363]
我々は,超スペクトル画像の混合雑音を取り除くために,部分空間表現と重み付き低ランクテンソル正規化(SWLRTR)をモデルに採用する。
実験により、SWLRTR法は、他の高スペクトル分解法よりも定量的かつ視覚的に優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-11-13T05:30:56Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Towards Flexible Sparsity-Aware Modeling: Automatic Tensor Rank Learning
Using The Generalized Hyperbolic Prior [24.848237413017937]
正準多進分解(CPD)のためのランク学習は、長い間必須だが難しい問題とみなされてきた。
テンソルランクの最適決定は、非決定論的時間ハード(NP-hard)タスクであることが知られている。
本稿では,確率論的モデリングモデルに先立って,より高度な一般化双曲型(GH)を導入する。
論文 参考訳(メタデータ) (2020-09-05T06:07:21Z) - Hyperspectral Image Denoising with Partially Orthogonal Matrix Vector
Tensor Factorization [42.56231647066719]
ハイパースペクトル画像(HSI)は、スペクトルの余分な情報により、様々な用途の自然画像に対していくつかの利点がある。
買収の間、しばしばガウシアンノイズ、インパルスノイズ、期限、ストライプなどの厳しい騒音によって汚染される。
本研究では,スムーズかつロバストな低ランクテンソルリカバリというHSI復元手法を提案する。
論文 参考訳(メタデータ) (2020-06-29T02:10:07Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T11:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。