論文の概要: Quantum error correction for long chains of trapped ions
- arxiv url: http://arxiv.org/abs/2503.22071v1
- Date: Fri, 28 Mar 2025 01:28:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-31 15:30:57.374604
- Title: Quantum error correction for long chains of trapped ions
- Title(参考訳): 閉じ込められたイオンの長鎖に対する量子誤差補正
- Authors: Min Ye, Nicolas Delfosse,
- Abstract要約: トラップイオンの長い鎖を持つ量子コンピューティングのモデルを提案する。
量子エラー補正スキームの主な構成要素は、量子コードと量子回路である。
約50ドルの量子ビットのチェーンでは、最先端の量子コードよりも優れた新しい量子コードを構築します。
- 参考スコア(独自算出の注目度): 23.864085643100186
- License:
- Abstract: We propose a model for quantum computing with long chains of trapped ions and we design quantum error correction schemes for this model. The main components of a quantum error correction scheme are the quantum code and a quantum circuit called the syndrome extraction circuit, which is executed to perform error correction with this code. In this work, we design syndrome extraction circuits tailored to our ion chain model, a syndrome extraction tuning protocol to optimize these circuits, and we construct new quantum codes that outperform the state-of-the-art for chains of about $50$ qubits. To establish a baseline under the ion chain model, we simulate the performance of surface codes and bivariate bicycle (BB) codes equipped with our optimized syndrome extraction circuits. Then, we propose a new variant of BB codes defined by weight-five measurements, that we refer to as BB5 codes, and we identify BB5 codes that achieve a better minimum distance than any BB codes with the same number of logical qubits and data qubits, such as $[[30, 4, 5]]$ and $[[48, 4, 7]]$ BB5 codes. For a physical error rate of $10^{-3}$, the $[[48, 4, 7]]$ BB5 code achieves a logical error rate per logical qubit of $5 \cdot 10^{-5}$, which is four times smaller than the best BB code in our baseline family. It also achieves the same logical error rate per logical qubit as the distance-7 surface code but using four times fewer physical qubits per logical qubit.
- Abstract(参考訳): トラップイオンの長い鎖を持つ量子コンピューティングのモデルを提案し、このモデルのための量子エラー補正スキームを設計する。
量子誤り訂正スキームの主な構成要素は、量子コードとシンドローム抽出回路と呼ばれる量子回路であり、この符号で誤り訂正を行うために実行される。
本研究では, イオン鎖モデルに適合したシンドローム抽出回路を設計し, これらの回路を最適化するためのシンドローム抽出チューニングプロトコルを構築し, 約50ドルキュービットのチェーンに対して最先端の量子コードを構築する。
イオン鎖モデルに基づくベースラインを確立するため,最適化されたシンドローム抽出回路を備えた表面符号とバイバリアイト自転車(BB)符号の性能をシミュレートした。
次に、重み5で定義されるBB符号の新たな変種を提案し、BB5符号をBB5符号とみなし、論理量子ビットとデータ量子ビットの同じ数のBB符号(例えば$[[30, 4, 5])と$[48, 4, 7]])と$[[48, 4, 7]]]のBB5符号よりも高い最小距離を達成するBB5符号を同定する。
10^{-3}$の物理誤差率に対して、[[48, 4, 7]]$ BB5 コードは論理キュービット当たりの論理誤差率 5 の 10^{-5}$ を達成する。
また、距離7曲面符号と同じ論理量子ビット当たりの論理誤り率を得るが、論理量子ビット当たりの物理量子ビットは4倍少ない。
関連論文リスト
- Quantum error correction below the surface code threshold [107.92016014248976]
量子誤り訂正は、複数の物理量子ビットを論理量子ビットに結合することで、実用的な量子コンピューティングに到達するための経路を提供する。
本研究では, リアルタイムデコーダと統合された距離7符号と距離5符号の2つの面符号メモリを臨界閾値以下で動作させる。
以上の結果から,大規模なフォールトトレラント量子アルゴリズムの動作要件を実現する装置の性能が示唆された。
論文 参考訳(メタデータ) (2024-08-24T23:08:50Z) - Entangling four logical qubits beyond break-even in a nonlocal code [0.0]
量子誤り訂正は、論理量子情報を環境デコヒーレンスから保護する。
我々は、4つの論理量子ビットのGHZ状態を99.5 pm 0.15 % le F le 99.7 pm 0.1%$でエンコードする(結果の98%以上でポストセレクトした後)。
我々の結果は、幾何学的に非局所的な量子低密度パリティチェック符号で符号化された論理量子ビットを用いたフォールトトレラント量子計算の実現に向けた第一歩である。
論文 参考訳(メタデータ) (2024-06-04T18:00:00Z) - Creating entangled logical qubits in the heavy-hex lattice with topological codes [0.0]
この作業では、このバグが機能にどのように変換されるかを示します。
コード距離が最大$d = 4$の論理量子ビット間の絡み合いを示す。
我々は、94%の忠実さを特徴とするポストセレクションを持つ$d=2$のケースに対して、ベルの不平等の違反を検証する。
論文 参考訳(メタデータ) (2024-04-24T17:02:35Z) - Fault-tolerant hyperbolic Floquet quantum error correcting codes [0.0]
ハイパボリックフロケット符号」と呼ばれる動的に生成された量子誤り訂正符号の族を導入する。
私たちの双曲的フロッケ符号の1つは、コード距離8の52の論理キュービットをエンコードするために400の物理キュービットを使用します。
小さなエラー率では、この符号に匹敵する論理的誤り抑制は、同じノイズモデルとデコーダを持つハニカム・フロケ符号を使用する場合、多くの物理量子ビット (1924) の5倍を必要とする。
論文 参考訳(メタデータ) (2023-09-18T18:00:02Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
複数のコードサイズにわたる論理量子ビット性能のスケーリングの測定について報告する。
超伝導量子ビット系は、量子ビット数の増加による追加誤差を克服するのに十分な性能を有する。
量子誤り訂正は量子ビット数が増加するにつれて性能が向上し始める。
論文 参考訳(メタデータ) (2022-07-13T18:00:02Z) - Simulation of the five-qubit quantum error correction code on
superconducting qubits [0.0]
本稿では,5つのデータ量子ビットと5つのアンシラ量子ビットしか必要としない最小距離3QEC符号に基づく回路を提案する。
そのフットプリントが小さいため、提案したコードは、同様の物理エラー率でSurface-17よりも論理エラー率が低い。
論文 参考訳(メタデータ) (2021-07-14T05:29:59Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。