論文の概要: Creating entangled logical qubits in the heavy-hex lattice with topological codes
- arxiv url: http://arxiv.org/abs/2404.15989v1
- Date: Wed, 24 Apr 2024 17:02:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 18:41:38.047959
- Title: Creating entangled logical qubits in the heavy-hex lattice with topological codes
- Title(参考訳): 位相符号を持つ重ヘックス格子における絡み合った論理量子ビットの生成
- Authors: Bence Hetényi, James R. Wootton,
- Abstract要約: この作業では、このバグが機能にどのように変換されるかを示します。
コード距離が最大$d = 4$の論理量子ビット間の絡み合いを示す。
我々は、94%の忠実さを特徴とするポストセレクションを持つ$d=2$のケースに対して、ベルの不平等の違反を検証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designs for quantum error correction depend strongly on the connectivity of the qubits. For solid state qubits, the most straightforward approach is to have connectivity constrained to a planar graph. Practical considerations may also further restrict the connectivity, resulting in a relatively sparse graph such as the heavy-hex architecture of current IBM Quantum devices. In such cases it is hard to use all qubits to their full potential. Instead, in order to emulate the denser connectivity required to implement well-known quantum error correcting codes, many qubits remain effectively unused. In this work we show how this bug can be turned into a feature. By using the unused qubits of one code to execute another, two codes can be implemented on top of each other, allowing easy application of fault-tolerant entangling gates and measurements. We demonstrate this by realizing a surface code and a Bacon-Shor code on a 133 qubit IBM Quantum device. Using transversal CX gates and lattice surgery we demonstrate entanglement between these logical qubits with code distance up to $d = 4$ and five rounds of stabilizer measurement cycles. The nonplanar coupling between the qubits allows us to simultaneously measure the logical $XX$, $YY$, and $ZZ$ observables. With this we verify the violation of Bell's inequality for both the $d=2$ case with post selection featuring a fidelity of $94\%$, and the $d=3$ instance using only quantum error correction.
- Abstract(参考訳): 量子誤差補正の設計は、量子ビットの接続性に強く依存する。
固体量子ビットの場合、最も簡単なアプローチは、平面グラフに接続を制約することである。
実際の考慮事項は接続性をさらに制限し、現在のIBM Quantumデバイスのヘビーヘックスアーキテクチャのような比較的スパースなグラフをもたらす可能性がある。
そのような場合、全ての量子ビットをその潜在能力を最大限に活用することは困難である。
代わりに、よく知られた量子誤り訂正符号を実装するために必要なより密接な接続をエミュレートするために、多くの量子ビットは効果的に使われないままである。
この作業では、このバグが機能にどのように変換されるかを示します。
1つのコードの未使用のキュービットを使って別のコードを実行することで、2つのコードが相互に実装され、フォールトトレラントなエンタングルゲートと測定を簡単に適用できる。
我々は、表面コードとBacon-Shor符号を133量子ビットのIBM量子デバイス上で実現し、これを実証する。
横方向のCXゲートと格子の手術を用いて、コード距離が最大$d = 4$および5ラウンドの安定化器測定サイクルを持つこれらの論理量子ビット間の絡み合いを示す。
量子ビット間の非平面結合により、論理的な$XX$, $YY$, $ZZ$Observablesを同時に測定できる。
これにより、$d=2$の場合と$d=3$の場合の両方において、9,4\%$の忠実さを特徴とするポストセレクションと、量子誤り訂正のみを用いて$d=3$のインスタンスの不正性を検証する。
関連論文リスト
- Demonstrating real-time and low-latency quantum error correction with superconducting qubits [52.08698178354922]
超伝導量子プロセッサに組み込まれたスケーラブルFPGAデコーダを用いて低遅延フィードバックを示す。
復号ラウンド数が増加するにつれて、論理誤差の抑制が観察される。
この作業でデコーダのスループットとレイテンシが発達し、デバイスの継続的な改善と相まって、次世代の実験がアンロックされた。
論文 参考訳(メタデータ) (2024-10-07T17:07:18Z) - Quantum error correction below the surface code threshold [107.92016014248976]
量子誤り訂正は、複数の物理量子ビットを論理量子ビットに結合することで、実用的な量子コンピューティングに到達するための経路を提供する。
本研究では, リアルタイムデコーダと統合された距離7符号と距離5符号の2つの面符号メモリを臨界閾値以下で動作させる。
以上の結果から,大規模なフォールトトレラント量子アルゴリズムの動作要件を実現する装置の性能が示唆された。
論文 参考訳(メタデータ) (2024-08-24T23:08:50Z) - Entangling four logical qubits beyond break-even in a nonlocal code [0.0]
量子誤り訂正は、論理量子情報を環境デコヒーレンスから保護する。
我々は、4つの論理量子ビットのGHZ状態を99.5 pm 0.15 % le F le 99.7 pm 0.1%$でエンコードする(結果の98%以上でポストセレクトした後)。
我々の結果は、幾何学的に非局所的な量子低密度パリティチェック符号で符号化された論理量子ビットを用いたフォールトトレラント量子計算の実現に向けた第一歩である。
論文 参考訳(メタデータ) (2024-06-04T18:00:00Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
我々は、$m=mathcalO(nk)$バイナリ変数を$n$ qubitsだけを使って最適化するために、$k>1$で可変量子ソルバを導入する。
我々は,特定の量子ビット効率の符号化が,バレン高原の超ポリノミウム緩和を内蔵特徴としてもたらすことを解析的に証明した。
論文 参考訳(メタデータ) (2024-01-17T18:59:38Z) - Fault-tolerant hyperbolic Floquet quantum error correcting codes [0.0]
ハイパボリックフロケット符号」と呼ばれる動的に生成された量子誤り訂正符号の族を導入する。
私たちの双曲的フロッケ符号の1つは、コード距離8の52の論理キュービットをエンコードするために400の物理キュービットを使用します。
小さなエラー率では、この符号に匹敵する論理的誤り抑制は、同じノイズモデルとデコーダを持つハニカム・フロケ符号を使用する場合、多くの物理量子ビット (1924) の5倍を必要とする。
論文 参考訳(メタデータ) (2023-09-18T18:00:02Z) - High-threshold and low-overhead fault-tolerant quantum memory [4.91491092996493]
符号化率の高いLDPC符号群に基づくエンドツーエンドの量子誤り訂正プロトコルを提案する。
12個の論理量子ビットを288個の物理量子ビットを用いて100万回近くのシンドロームサイクルで保存できることを示す。
論文 参考訳(メタデータ) (2023-08-15T17:55:12Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
本稿では,1次元に制約された量子ビット格子の幅と物理閾値の関係について検討する。
我々は、表面コードを用いた最小レベルのエンコーディングでエラーバイアスを設計する。
このバイアスを格子サージャリングサーフェスコードバスを用いて高レベルなエンコーディングで処理する。
論文 参考訳(メタデータ) (2022-12-03T06:16:07Z) - Protecting Expressive Circuits with a Quantum Error Detection Code [0.0]
我々は,既存のトラップイオンコンピュータの実装のための量子エラー検出コードを開発した。
k$論理量子ビットを$k+2$物理量子ビットに符号化することにより、フォールトトレラントな状態初期化とシンドローム測定回路を提示する。
論文 参考訳(メタデータ) (2022-11-12T16:46:35Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
複数のコードサイズにわたる論理量子ビット性能のスケーリングの測定について報告する。
超伝導量子ビット系は、量子ビット数の増加による追加誤差を克服するのに十分な性能を有する。
量子誤り訂正は量子ビット数が増加するにつれて性能が向上し始める。
論文 参考訳(メタデータ) (2022-07-13T18:00:02Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Describing quantum metrology with erasure errors using weight
distributions of classical codes [9.391375268580806]
我々は、古典的な$[n,k,d]$二進ブロック符号に対応する構造を持つ量子プローブ状態について検討する。
これらのプローブ状態が古典場の未知の大きさを推定できるという究極の精度の限界を得る。
論文 参考訳(メタデータ) (2020-07-06T16:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。