Variational quantum-neural hybrid imaginary time evolution
- URL: http://arxiv.org/abs/2503.22570v1
- Date: Fri, 28 Mar 2025 16:19:12 GMT
- Title: Variational quantum-neural hybrid imaginary time evolution
- Authors: Hiroki Kuji, Tetsuro Nikuni, Yuta Shingu,
- Abstract summary: We propose variational quantum-neural hybrid ITE method (VQNHITE)<n>Our proposal accurately estimates ITE by combining the neural network and parameterized quantum circuit.<n>We tested our approach with numerical simulations to evaluate the performance of VQNHITE relative to VITE.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Numerous methodologies have been proposed for performing imaginary time evolution (ITE) using quantum computers. Among these, variational ITE (VITE) for noisy intermediate-scale quantum (NISQ) computers has attracted much attention, which uses parametrized quantum circuits to mimic non-unitary dynamics. However, conventional variational quantum algorithms including VITE face challenges in achieving high accuracy due to their strong dependence on the choice of ansatz quantum circuits. Recently, the variational quantum-neural eigensolver (VQNHE), which combines the neural network (NN) with the variational quantum eigensolver, has been proposed. This approach enhances performance of estimating the expectation values of the state given by the parametrized quantum circuit and NN. In this study, we propose a variational quantum-neural hybrid ITE method (VQNHITE). Our proposal accurately estimates ITE by combining the NN and parameterized quantum circuit. We tested our approach with numerical simulations to evaluate the performance of VQNHITE relative to VITE.
Related papers
- Quantum-enhanced neural networks for quantum many-body simulations [3.8145527526052576]
We propose a quantum-neural hybrid framework that combines parameterized quantum circuits with neural networks to model quantum many-body wavefunctions.<n> Numerical simulations demonstrate the scalability and accuracy of the hybrid ansatz in spin systems and quantum chemistry problems.
arXiv Detail & Related papers (2025-01-21T13:44:52Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Variational post-selection for ground states and thermal states
simulation [1.9336815376402718]
Variational quantum algorithms (VQAs) are one of the most promising routes in the noisy intermediate-scale quantum (NISQ) era.
We propose a framework to enhance the expressiveness of variational quantum ansatz by incorporating variational post-selection techniques.
arXiv Detail & Related papers (2024-02-12T12:16:17Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Fundamental limitations on optimization in variational quantum
algorithms [7.165356904023871]
A leading paradigm to establish such near-term quantum applications is variational quantum algorithms (VQAs)
We prove that for a broad class of such random circuits, the variation range of the cost function vanishes exponentially in the number of qubits with a high probability.
This result can unify the restrictions on gradient-based and gradient-free optimizations in a natural manner and reveal extra harsh constraints on the training landscapes of VQAs.
arXiv Detail & Related papers (2022-05-10T17:14:57Z) - Variational Quantum-Neural Hybrid Error Mitigation [6.555128824546528]
Quantum error mitigation (QEM) is crucial for obtaining reliable results on quantum computers.
We show how variational quantum-neural hybrid eigensolver (VQNHE) algorithm is inherently noise resilient with a unique QEM capacity.
arXiv Detail & Related papers (2021-12-20T08:07:58Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.