Quantum Port: Gamification of quantum teleportation for public engagement
- URL: http://arxiv.org/abs/2503.22701v1
- Date: Mon, 17 Mar 2025 09:39:10 GMT
- Title: Quantum Port: Gamification of quantum teleportation for public engagement
- Authors: Pak Shen Choong, Aqilah Rasat, Afiqa Nik Aimi, Nurisya Mohd Shah,
- Abstract summary: We will refer to quantum theory as categorical quantum mechanics (CQM)<n>We propose the second level of transformation by gamifying the diagrammatic rules of quantum teleportation into a quantum card game called Quantum Port.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Concepts on quantum physics are generally difficult for the general public to understand and grasp due to its counter-intuitive nature and requirement for higher level of mathematical literacy. With categorical quantum mechanics (CQM), quantum theory is re-formalized into a more intuitive diagrammatic approach, which we will refer to as the first level of transformation, to improve the accessibility and readability of quantum theory to a broader audience since the mathematical details are embedded into diagrammatic rules. Taking inspiration from this diagrammatic approach, we propose the second level of transformation by gamifying the diagrammatic rules of quantum teleportation into a quantum card game called Quantum Port. In this work, we discuss the gamification process of quantum teleportation and provide a printable version of Quantum Port for public engagement.
Related papers
- Quantum Computing in Transport Science: A Review [0.8437187555622164]
Quantum computing, leveraging the principles of quantum mechanics, has been found to significantly enhance computational capabilities in principle.<n>This paper explores quantum computing's potential to address complex, large-scale problems in transportation systems.
arXiv Detail & Related papers (2025-03-27T09:28:33Z) - An inverter-chain link implementation of quantum teleportation and
superdense coding [0.0]
inverter-chain link (ICL) diagrams of quantum entanglement faithfully capture the fundamental concept of quantum teleportation and superdense coding.
On the fundamental question posed by EPR, our result seems to lend support to the geometric nature of quantum entanglement.
arXiv Detail & Related papers (2023-12-06T04:03:11Z) - QuantumEyes: Towards Better Interpretability of Quantum Circuits [6.039166896674042]
We propose QuantumEyes, an interactive visual analytics system to enhance the interpretability of quantum circuits.
For the global-level analysis, we present three coupled visualizations to delineate the changes of quantum states and the underlying reasons.
For the local-level analysis, we design a novel geometrical visualization Dandelion Chart to explicitly reveal how the quantum amplitudes affect the probability of the quantum state.
arXiv Detail & Related papers (2023-11-14T08:20:11Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Computing by Quantum Walk on Quantum Slide [9.087383504015682]
Continuous-time quantum walk is one of the alternative approaches to quantum computation.
We show how quantum slide can be further applied to realize universal quantum computation.
arXiv Detail & Related papers (2022-11-16T04:19:13Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum Data Compression and Quantum Cross Entropy [0.0]
We show that quantum cross entropy acts as the compression rate for sub-optimal quantum source coding.
This reveals that quantum cross entropy can effectively serve as a loss function in quantum machine learning algorithms.
arXiv Detail & Related papers (2021-06-25T18:00:33Z) - Quantum teleportation is a reversal of quantum measurement [0.0]
We introduce a generalized concept of quantum teleportation in the framework of quantum measurement and reversing operation.
Our framework makes it possible to find an optimal protocol for quantum teleportation enabling a faithful transfer of unknown quantum states.
arXiv Detail & Related papers (2021-04-25T15:03:08Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.