Risk-Calibrated Affective Speech Recognition via Conformal Coverage Guarantees: A Stochastic Calibrative Framework for Emergent Uncertainty Quantification
- URL: http://arxiv.org/abs/2503.22712v1
- Date: Mon, 24 Mar 2025 12:26:28 GMT
- Title: Risk-Calibrated Affective Speech Recognition via Conformal Coverage Guarantees: A Stochastic Calibrative Framework for Emergent Uncertainty Quantification
- Authors: Zijun Jia,
- Abstract summary: Traffic safety challenges arising from extreme driver emotions highlight the urgent need for reliable emotion recognition systems.<n>Traditional deep learning approaches in speech emotion recognition suffer from overfitting and poorly calibrated confidence estimates.<n>We propose a framework integrating Conformal Prediction (CP) and Risk Control,using Mel-spectrogram features processed through a pre-trained neural network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic safety challenges arising from extreme driver emotions highlight the urgent need for reliable emotion recognition systems. Traditional deep learning approaches in speech emotion recognition suffer from overfitting and poorly calibrated confidence estimates. We propose a framework integrating Conformal Prediction (CP) and Risk Control,using Mel-spectrogram features processed through a pre-trained convolutional neural network. Our key innovation is the development of a nonconformity score that heuristically measures how closely a classifier's predictions align with given inputs. Through calibration samples, we compute this score and derive a statistically rigorous threshold based on user-specified risk level $\alpha$, constructing prediction sets with provable coverage guarantees ($\geq 1-\alpha$). The Risk Control framework enables task-specific adaptation through customizable loss functions, dynamically adjusting prediction set sizes while maintaining coverage guarantees. Cross-dataset experiments on IEMOCAP and TESS demonstrate: 1) Strict coverage guarantee, 2) Significant negative correlation between Average Prediction Set Size (APSS) and $\alpha$, revealing reduced model uncertainty under high-risk conditions. We further propose APSS as a novel metric for evaluating classification uncertainty. This approach enhances speech emotion recognition reliability, with direct applications in intelligent transportation systems and real-time emotion monitoring.
Related papers
- Regression-Based Estimation of Causal Effects in the Presence of Selection Bias and Confounding [52.1068936424622]
We consider the problem of estimating the expected causal effect $E[Y|do(X)]$ for a target variable $Y$ when treatment $X$ is set by intervention.
In settings without selection bias or confounding, $E[Y|do(X)] = E[Y|X]$, which can be estimated using standard regression methods.
We propose a framework that incorporates both selection bias and confounding.
arXiv Detail & Related papers (2025-03-26T13:43:37Z) - PredictaBoard: Benchmarking LLM Score Predictability [50.47497036981544]
Large Language Models (LLMs) often fail unpredictably.<n>This poses a significant challenge to ensuring their safe deployment.<n>We present PredictaBoard, a novel collaborative benchmarking framework.
arXiv Detail & Related papers (2025-02-20T10:52:38Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Integrating uncertainty quantification into randomized smoothing based robustness guarantees [18.572496359670797]
Deep neural networks are vulnerable to adversarial attacks which can cause hazardous incorrect predictions in safety-critical applications.
Certified robustness via randomized smoothing gives a probabilistic guarantee that the smoothed classifier's predictions will not change within an $ell$-ball around a given input.
Uncertainty-based rejection is a technique often applied in practice to defend models against adversarial attacks.
We demonstrate, that the novel framework allows for a systematic evaluation of different network architectures and uncertainty measures.
arXiv Detail & Related papers (2024-10-27T13:07:43Z) - Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
The consistency of the resulting uncertainty values hinges on the premise that the learning function conforms to the properties specified by the GP model.
We propose to wed the GP with the prevailing conformal prediction (CP), a distribution-free post-processing framework that produces it prediction sets with a provably valid coverage.
arXiv Detail & Related papers (2024-10-07T19:22:15Z) - Spatial-Aware Conformal Prediction for Trustworthy Hyperspectral Image Classification [39.71307720326761]
Hyperspectral image (HSI) classification involves assigning unique labels to each pixel to identify various land cover categories.
Deep classifiers have achieved high predictive accuracy in this field, but they lack the ability to quantify confidence in their predictions.
We introduce Spatial-Aware Conformal Prediction (textttSACP), a conformal prediction framework specifically designed for HSI data.
arXiv Detail & Related papers (2024-09-02T13:11:38Z) - UAHOI: Uncertainty-aware Robust Interaction Learning for HOI Detection [18.25576487115016]
This paper focuses on Human-Object Interaction (HOI) detection.
It addresses the challenge of identifying and understanding the interactions between humans and objects within a given image or video frame.
We propose a novel approach textscUAHOI, Uncertainty-aware Robust Human-Object Interaction Learning.
arXiv Detail & Related papers (2024-08-14T10:06:39Z) - Automatically Adaptive Conformal Risk Control [49.95190019041905]
We propose a methodology for achieving approximate conditional control of statistical risks by adapting to the difficulty of test samples.<n>Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning.
arXiv Detail & Related papers (2024-06-25T08:29:32Z) - Verifiably Robust Conformal Prediction [1.391198481393699]
This paper introduces VRCP (Verifiably Robust Conformal Prediction), a new framework that leverages neural network verification methods to recover coverage guarantees under adversarial attacks.
Our method is the first to support perturbations bounded by arbitrary norms including $ell1$, $ell2$, and $ellinfty$, as well as regression tasks.
In every case, VRCP achieves above nominal coverage and yields significantly more efficient and informative prediction regions than the SotA.
arXiv Detail & Related papers (2024-05-29T09:50:43Z) - Provably Robust Conformal Prediction with Improved Efficiency [29.70455766394585]
Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage.
adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates.
We propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little overhead.
arXiv Detail & Related papers (2024-04-30T15:49:01Z) - Robust Conformal Prediction under Distribution Shift via Physics-Informed Structural Causal Model [24.58531056536442]
Conformal prediction (CP) handles uncertainty by predicting a set on a test input.
This coverage can be guaranteed on test data even if the marginal distributions $P_X$ differ between calibration and test datasets.
We propose a physics-informed structural causal model (PI-SCM) to reduce the upper bound.
arXiv Detail & Related papers (2024-03-22T08:13:33Z) - Conservative Prediction via Data-Driven Confidence Minimization [70.93946578046003]
In safety-critical applications of machine learning, it is often desirable for a model to be conservative.
We propose the Data-Driven Confidence Minimization framework, which minimizes confidence on an uncertainty dataset.
arXiv Detail & Related papers (2023-06-08T07:05:36Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Lightweight, Uncertainty-Aware Conformalized Visual Odometry [2.429910016019183]
Data-driven visual odometry (VO) is a critical subroutine for autonomous edge robotics.
Emerging edge robotics devices like insect-scale drones and surgical robots lack a computationally efficient framework to estimate VO's predictive uncertainties.
This paper presents a novel, lightweight, and statistically robust framework that leverages conformal inference (CI) to extract VO's uncertainty bands.
arXiv Detail & Related papers (2023-03-03T20:37:55Z) - Confidence Calibration for Intent Detection via Hyperspherical Space and
Rebalanced Accuracy-Uncertainty Loss [17.26964140836123]
In some scenarios, users do not only care about the accuracy but also the confidence of model.
We propose a model using the hyperspherical space and rebalanced accuracy-uncertainty loss.
Our model outperforms the existing calibration methods and achieves a significant improvement on the calibration metric.
arXiv Detail & Related papers (2022-03-17T12:01:33Z) - Tail-to-Tail Non-Autoregressive Sequence Prediction for Chinese
Grammatical Error Correction [49.25830718574892]
We present a new framework named Tail-to-Tail (textbfTtT) non-autoregressive sequence prediction.
Considering that most tokens are correct and can be conveyed directly from source to target, and the error positions can be estimated and corrected.
Experimental results on standard datasets, especially on the variable-length datasets, demonstrate the effectiveness of TtT in terms of sentence-level Accuracy, Precision, Recall, and F1-Measure.
arXiv Detail & Related papers (2021-06-03T05:56:57Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
We focus on uncertainty quantification (UQ) for classification problems via two avenues.
We first argue that label shift hurts UQ, by showing degradation in coverage and calibration.
We examine these techniques theoretically in a distribution-free framework and demonstrate their excellent practical performance.
arXiv Detail & Related papers (2021-03-04T20:51:03Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints.
We also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets.
arXiv Detail & Related papers (2020-08-21T18:43:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.