論文の概要: Predictive Traffic Rule Compliance using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2503.22925v1
- Date: Sat, 29 Mar 2025 01:04:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:34:03.015127
- Title: Predictive Traffic Rule Compliance using Reinforcement Learning
- Title(参考訳): 強化学習を用いた予測的交通ルールコンプライアンス
- Authors: Yanliang Huang, Sebastian Mair, Zhuoqi Zeng, Amr Alanwar, Matthias Althoff,
- Abstract要約: 本稿では,交通ルール違反の可能性を予測するために,モーションプランナと深層強化学習モデルを統合した新しいアプローチを提案する。
我々は、ドイツ道路交通規制の重要な州間ルールをルールブックに組み込み、複雑な交通情報を扱うためにグラフベースの状態表現を使用する。
オープンなドイツの高速道路データセットの実験では、計画の地平線を超えた交通ルール違反を予測し、防止することができる。
- 参考スコア(独自算出の注目度): 7.414915927065194
- License:
- Abstract: Autonomous vehicle path planning has reached a stage where safety and regulatory compliance are crucial. This paper presents a new approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations. In this setup, the predictions of the critic directly affect the cost function of the motion planner, guiding the choices of the trajectory. We incorporate key interstate rules from the German Road Traffic Regulation into a rule book and use a graph-based state representation to handle complex traffic information. Our main innovation is replacing the standard actor network in an actor-critic setup with a motion planning module, which ensures both predictable trajectory generation and prevention of long-term rule violations. Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon, significantly increasing safety in challenging traffic conditions.
- Abstract(参考訳): 自動運転車の経路計画は、安全と規制の遵守が不可欠である段階に達している。
本稿では,交通ルール違反の可能性を予測するために,モーションプランナと深層強化学習モデルを統合した新しいアプローチを提案する。
この設定では、批評家の予測は、運動プランナーのコスト関数に直接影響を与え、軌道の選択を導く。
我々は、ドイツ道路交通規制の重要な州間ルールをルールブックに組み込み、複雑な交通情報を扱うためにグラフベースの状態表現を使用する。
我々の主な革新は、アクター・クリティカルな設定で標準的なアクター・ネットワークをモーション・プランニング・モジュールに置き換えることです。
オープンなドイツの高速道路データセットの実験では、このモデルが計画的地平線を超えた交通規則違反を予測し、防止し、挑戦的な交通条件の安全性を著しく向上させることを示した。
関連論文リスト
- A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
軌道予測は、自動運転車における計画の安全性と効率に不可欠である。
現在のモデルでは、複雑な交通規則と潜在的な車両の動きを完全に捉えることができないことが多い。
本研究は, オフロード損失, 方向整合誤差, ダイバーシティ損失の3つの新しい損失関数を紹介する。
論文 参考訳(メタデータ) (2024-11-29T14:47:08Z) - Provable Traffic Rule Compliance in Safe Reinforcement Learning on the Open Sea [8.017543518311196]
強化学習(Reinforcement Learning, RL)は、自動運転車の運動計画を見つけるための有望な方法である。
提案手法は,時間論理仕様をRLに組み込むことにより,規則遵守の保証を実現する。
重要な海上交通状況に関する数値的な評価では、我々のエージェントは常に形式化された法規に準拠し、決して衝突しない。
論文 参考訳(メタデータ) (2024-02-13T14:59:19Z) - KI-PMF: Knowledge Integrated Plausible Motion Forecasting [11.311561045938546]
現在の軌道予測手法は、主に特定の計量で損失関数を最適化することに集中している。
我々の目的は、車両の運動的制約の双方に応じて、ネットワークが将来の軌跡を予測できる明示的な知識事前を組み込むことである。
提案手法は,複雑な状況と動的状況の両方において,交通アクタの到達可能性を保証するように設計されている。
論文 参考訳(メタデータ) (2023-10-18T14:40:52Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
軌道計画は、自動運転車のグローバルな最適ルートを作成することを目的としている。
既存の自転車キネマティックモデルを用いた実装では、制御可能な軌道は保証できない。
このモデルを、曲率と長手ジャークの1階および2階微分を含む高階項で拡張する。
論文 参考訳(メタデータ) (2023-09-25T22:30:18Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - iTV: Inferring Traffic Violation-Prone Locations with Vehicle
Trajectories and Road Environment Data [12.715237421592624]
本研究では,大規模車両軌跡データと環境データに基づいて,都市部における交通違反発生箇所を推定する枠組みを提案する。
提案手法の有効性を評価するため,中国2都市から収集した大規模・現実世界の車両軌道について広範な研究を行った。
論文 参考訳(メタデータ) (2020-05-09T08:52:43Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
マルチエージェント設定における予測問題に対処するために,計画インフォームド・トラジェクトリ予測(PiP)を提案する。
本手法は,エゴカーの計画により予測過程を通知することにより,高速道路のデータセット上でのマルチエージェント予測の最先端性能を実現する。
論文 参考訳(メタデータ) (2020-03-25T16:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。