Predictive Traffic Rule Compliance using Reinforcement Learning
- URL: http://arxiv.org/abs/2503.22925v2
- Date: Fri, 04 Apr 2025 14:28:47 GMT
- Title: Predictive Traffic Rule Compliance using Reinforcement Learning
- Authors: Yanliang Huang, Sebastian Mair, Zhuoqi Zeng, Matthias Althoff,
- Abstract summary: This paper presents an approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations.<n>Our main innovation is replacing the standard actor network in an actor-critic method with a motion planning module, which ensures both stable and interpretable trajectory generation.<n> Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon.
- Score: 7.280087547993983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous vehicle path planning has reached a stage where safety and regulatory compliance are crucial. This paper presents an approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations. Our main innovation is replacing the standard actor network in an actor-critic method with a motion planning module, which ensures both stable and interpretable trajectory generation. In this setup, we use traffic rule robustness as the reward to train a reinforcement learning agent's critic, and the output of the critic is directly used as the cost function of the motion planner, which guides the choices of the trajectory. We incorporate some key interstate rules from the German Road Traffic Regulation into a rule book and use a graph-based state representation to handle complex traffic information. Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon, increasing safety and rule compliance in challenging traffic scenarios.
Related papers
- Centaur: Robust End-to-End Autonomous Driving with Test-Time Training [84.78837437133234]
We propose Centaur, which updates a planner's behavior via test-time training without relying on hand-engineered rules or cost functions.<n>We develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms.
arXiv Detail & Related papers (2025-03-14T17:59:41Z) - A Framework for Learning Scoring Rules in Autonomous Driving Planning Systems [2.4578723416255754]
FLoRA is a framework that learns interpretable scoring rules represented in temporal logic.
Our approach effectively learns to evaluate driving behavior even though the training data only contains positive examples.
Evaluations in closed-loop planning simulations demonstrate that our learned scoring rules outperform existing techniques.
arXiv Detail & Related papers (2025-02-17T02:06:57Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.<n>Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.<n>This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Driving with Regulation: Interpretable Decision-Making for Autonomous Vehicles with Retrieval-Augmented Reasoning via LLM [11.725133614445093]
This work presents an interpretable decision-making framework for autonomous vehicles.
We develop a Traffic Regulation Retrieval (TRR) Agent based on Retrieval-Augmented Generation (RAG)
Given the semantic complexity of the retrieved rules, we also design a reasoning module powered by a Large Language Model (LLM)
arXiv Detail & Related papers (2024-10-07T05:27:22Z) - Provable Traffic Rule Compliance in Safe Reinforcement Learning on the Open Sea [8.017543518311196]
Reinforcement learning (RL) is a promising method to find motion plans for autonomous vehicles.
Our approach accomplishes guaranteed rule-compliance by integrating temporal logic specifications into RL.
In numerical evaluations on critical maritime traffic situations, our agent always complies with the formalized legal rules and never collides.
arXiv Detail & Related papers (2024-02-13T14:59:19Z) - KI-PMF: Knowledge Integrated Plausible Motion Forecasting [11.311561045938546]
Current trajectory forecasting approaches primarily concentrate on optimizing a loss function with a specific metric.
Our objective is to incorporate explicit knowledge priors that allow a network to forecast future trajectories in compliance with both the kinematic constraints of a vehicle.
Our proposed method is designed to ensure reachability guarantees for traffic actors in both complex and dynamic situations.
arXiv Detail & Related papers (2023-10-18T14:40:52Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
Trajectory planning aims to produce a globally optimal route for Autonomous Passenger Vehicles.
Existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories.
We augment this model by higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk.
arXiv Detail & Related papers (2023-09-25T22:30:18Z) - Guided Conditional Diffusion for Controllable Traffic Simulation [42.198185904248994]
Controllable and realistic traffic simulation is critical for developing and verifying autonomous vehicles.
Data-driven approaches generate realistic and human-like behaviors, improving transfer from simulated to real-world traffic.
We develop a conditional diffusion model for controllable traffic generation (CTG) that allows users to control desired properties of trajectories at test time.
arXiv Detail & Related papers (2022-10-31T14:44:59Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models [76.32775745488073]
We present a novel dataset and modeling framework designed to study motion planning in understructured environments.
We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset.
arXiv Detail & Related papers (2022-09-19T05:06:57Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
We propose planning-informed trajectory prediction (PiP) to tackle the prediction problem in the multi-agent setting.
By informing the prediction process with the planning of ego vehicle, our method achieves the state-of-the-art performance of multi-agent forecasting on highway datasets.
arXiv Detail & Related papers (2020-03-25T16:09:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.