Late Breaking Results: Breaking Symmetry- Unconventional Placement of Analog Circuits using Multi-Level Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2503.22958v3
- Date: Thu, 10 Apr 2025 19:42:17 GMT
- Title: Late Breaking Results: Breaking Symmetry- Unconventional Placement of Analog Circuits using Multi-Level Multi-Agent Reinforcement Learning
- Authors: Supriyo Maji, Linran Zhao, Souradip Poddar, David Z. Pan,
- Abstract summary: We propose an objective-driven, multi-level, multi-agent Q-learning framework to explore unconventional design space of analog layout.<n>Our approach achieves better variation performance than the state-of-the-art layout techniques.
- Score: 4.684022970694239
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Layout-dependent effects (LDEs) significantly impact analog circuit performance. Traditionally, designers have relied on symmetric placement of circuit components to mitigate variations caused by LDEs. However, due to non-linear nature of these effects, conventional methods often fall short. We propose an objective-driven, multi-level, multi-agent Q-learning framework to explore unconventional design space of analog layout, opening new avenues for optimizing analog circuit performance. Our approach achieves better variation performance than the state-of-the-art layout techniques. Notably, this is the first application of multi-agent RL in analog layout automation. The proposed approach is compared with non-ML approach based on simulated annealing.
Related papers
- Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based? [89.05848771674773]
A novel antenna system ()-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed.<n>It consists of multiple waveguides, which equip numerous low-cost antennas, named (PAs)<n>The positions of PAs can be reconfigured to both spanning large-scale path and space.
arXiv Detail & Related papers (2025-02-12T18:54:10Z) - Automated Placement of Analog Integrated Circuits using Priority-based Constructive Heuristic [0.0]
We focus on the specific class of analog placement, which requires so-called pockets, their possible merging, and parametrizable minimum distances between devices.
Our solution minimizes the perimeter of the circuit's bounding box and the approximated wire length.
We show the quality of the proposed method on both synthetically generated and real-life industrial instances accompanied by manually created designs.
arXiv Detail & Related papers (2024-10-18T07:16:59Z) - SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning [49.83621156017321]
SimBa is an architecture designed to scale up parameters in deep RL by injecting a simplicity bias.
By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved.
arXiv Detail & Related papers (2024-10-13T07:20:53Z) - CktGen: Specification-Conditioned Analog Circuit Generation [28.780603785886242]
We introduce a task that directly generates analog circuits based on specified specifications.
Specifically, we propose CktGen, a simple yet effective variational autoencoder (VAE) model.
We conduct comprehensive experiments on the Open Circuit Benchmark (OCB) and introduce new evaluation metrics for cross-model consistency.
arXiv Detail & Related papers (2024-10-01T18:35:44Z) - Machine Learning Driven Global Optimisation Framework for Analog Circuit Design [0.0]
We propose a machine learning-driven optimisation framework for analog circuit design.
We employ machine learning models and spice simulations to direct the optimisation algorithm.
arXiv Detail & Related papers (2024-02-27T03:51:00Z) - Graph Attention-Based Symmetry Constraint Extraction for Analog Circuits [15.126046083792597]
We propose a graph-based learning framework to automatically extract symmetric constraints in analog circuit layout.
The proposed framework leverages the connection characteristics of circuits and the devices' information to learn the general rules of symmetric constraints.
arXiv Detail & Related papers (2023-12-22T03:10:59Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Proximal Policy Optimization-based Transmit Beamforming and Phase-shift
Design in an IRS-aided ISAC System for the THz Band [90.45915557253385]
IRS-aided integrated sensing and communications (ISAC) system operating in the terahertz (THz) band is proposed to maximize the system capacity.
Transmit beamforming and phase-shift design are transformed into a universal optimization problem with ergodic constraints.
arXiv Detail & Related papers (2022-03-21T09:15:18Z) - Domain Knowledge-Based Automated Analog Circuit Design with Deep
Reinforcement Learning [6.599793419469274]
This paper presents a deep reinforcement learning method to expedite the design of analog circuits.
Experimental results show it achieves human-level design accuracy (99%) with 1.5x efficiency of existing best-performing methods.
arXiv Detail & Related papers (2022-02-26T16:56:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.