論文の概要: From Content Creation to Citation Inflation: A GenAI Case Study
- arxiv url: http://arxiv.org/abs/2503.23414v1
- Date: Sun, 30 Mar 2025 12:17:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.109227
- Title: From Content Creation to Citation Inflation: A GenAI Case Study
- Title(参考訳): コンテンツ創造からCitation Inflationへ:GenAIケーススタディ
- Authors: Haitham S. Al-Sinani, Chris J. Mitchell,
- Abstract要約: 本稿では,AIによる疑わしい学術論文がプレプリントレポジトリに与える影響について検討する。
GenAIによるサイバーセキュリティの研究に関する出版物で観察された疑わしいパターンに触発され、疑わしい論文やプロファイルの集合を識別する。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the presence and impact of questionable, AI-generated academic papers on widely used preprint repositories, with a focus on their role in citation manipulation. Motivated by suspicious patterns observed in publications related to our ongoing research on GenAI-enhanced cybersecurity, we identify clusters of questionable papers and profiles. These papers frequently exhibit minimal technical content, repetitive structure, unverifiable authorship, and mutually reinforcing citation patterns among a recurring set of authors. To assess the feasibility and implications of such practices, we conduct a controlled experiment: generating a fake paper using GenAI, embedding citations to suspected questionable publications, and uploading it to one such repository (ResearchGate). Our findings demonstrate that such papers can bypass platform checks, remain publicly accessible, and contribute to inflating citation metrics like the H-index and i10-index. We present a detailed analysis of the mechanisms involved, highlight systemic weaknesses in content moderation, and offer recommendations for improving platform accountability and preserving academic integrity in the age of GenAI.
- Abstract(参考訳): 本稿では,AIを用いた学術論文が広く利用されているプレプリントレポジトリにおける存在と影響について検討し,引用操作におけるその役割に着目した。
GenAIによるサイバーセキュリティに関する現在進行中の研究に関する出版物で観察されている疑わしいパターンに触発されて、疑わしい論文やプロファイルの集合を同定する。
これらの論文は、しばしば、最小限の技術内容、反復的構造、検証不可能な著者シップ、そして繰り返し作家たちの引用パターンを相互に補強するものである。
そこで我々は,GenAIを用いて偽の論文を作成し,疑わしい出版物に引用文を埋め込んで,そのようなリポジトリ(ResearchGate)にアップロードする,制御された実験を行った。
以上の結果から,これらの論文はプラットフォームチェックをバイパスし,引き続きアクセス可能であり,H-インデックスやi10-インデックスなどの引用指標の増大に寄与することが示唆された。
本稿では,そのメカニズムを詳細に分析し,コンテンツモデレーションの体系的弱点を明らかにするとともに,プラットフォームアカウンタビリティの向上とGenAI時代の学術的整合性の維持を推奨する。
関連論文リスト
- TrustRAG: An Information Assistant with Retrieval Augmented Generation [73.84864898280719]
TrustRAGは、インデックス付け、検索、生成という3つの視点から、acRAGを強化する新しいフレームワークである。
我々はTrustRAGフレームワークをオープンソース化し、抜粋ベースの質問応答タスク用に設計されたデモスタジオを提供する。
論文 参考訳(メタデータ) (2025-02-19T13:45:27Z) - Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
検索,リランカー,大型言語モデル(LLM)の埋め込みモデルは,コンテンツインジェクション攻撃に対して脆弱であることがわかった。
主な脅威は,(1) 意味不明な内容や有害な内容の挿入,(2) 関連性を高めるために,問合せ全体あるいはキークエリ用語の挿入,の2つである。
本研究は, 注射内容の配置や関連物質と非関連物質とのバランスなど, 攻撃の成功に影響を与える要因を系統的に検討した。
論文 参考訳(メタデータ) (2025-01-30T18:02:15Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - Temporal Graph Neural Network-Powered Paper Recommendation on Dynamic Citation Networks [4.666226480911492]
本稿では,紙レコメンデーション戦略に時間的次元を導入する。
中心となる考え方は、新しい引用関係が現れたときに紙の埋め込みを継続的に更新することである。
リカレントニューラルネットワーク(RNN)に基づく学習可能なメモリ更新モジュールを使用して、埋め込みの進化を研究する。
論文 参考訳(メタデータ) (2024-08-27T19:10:21Z) - SyROCCo: Enhancing Systematic Reviews using Machine Learning [6.805429133535976]
本稿では,システムレビュープロセスのナビゲートを支援する機械学習技術について検討する。
データ抽出やエビデンスマッピングといったレビューのその後の段階へのML技術の適用は、その初期段階にある。
論文 参考訳(メタデータ) (2024-06-24T11:04:43Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - Can citations tell us about a paper's reproducibility? A case study of machine learning papers [3.5120846057971065]
リソースの制約やドキュメントの不十分さは、レプリケーションの実行を特に困難にします。
本稿では,機械学習の再現性問題に関わる論文の引用文脈に適用した感情分析フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-07T03:29:11Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [55.33653554387953]
パターン分析とマシンインテリジェンス(PAMI)は、情報の収集と断片化を目的とした多くの文献レビューにつながっている。
本稿では、PAMI分野におけるこれらの文献レビューの徹底的な分析について述べる。
1)PAMI文献レビューの構造的・統計的特徴は何か,(2)レビューの増大するコーパスを効率的にナビゲートするために研究者が活用できる戦略は何か,(3)AIが作成したレビューの利点と限界は人間によるレビューと比較するとどのようなものか,という3つの主要な研究課題に対処しようとする。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - InteractiveIE: Towards Assessing the Strength of Human-AI Collaboration
in Improving the Performance of Information Extraction [48.45550809455558]
文書からテンプレートをベースとした学習情報抽出の性能向上を図るために,対話IE(InteractiveIE)と呼ばれるプロキシをオンザフライで行う方法を提案する。
バイオメディカルおよび法的文書の実験では、トレーニングデータを取得するのが高価であり、AIのみのベースラインよりもInteractiveIEを使用したパフォーマンス改善の奨励的な傾向が明らかにされている。
論文 参考訳(メタデータ) (2023-05-24T02:53:22Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - What's New? Summarizing Contributions in Scientific Literature [85.95906677964815]
本稿では,論文のコントリビューションと作業状況について,個別の要約を生成するために,論文要約のアンタングル化という新たなタスクを導入する。
本稿では,学術論文のS2ORCコーパスを拡張し,コントリビューション・コントリビューション・コントリビューション・レファレンス・ラベルを付加する。
本稿では, 生成した出力の関連性, 新規性, 絡み合いを報告する総合的自動評価プロトコルを提案する。
論文 参考訳(メタデータ) (2020-11-06T02:23:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。