論文の概要: A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control
- arxiv url: http://arxiv.org/abs/2503.23626v1
- Date: Sun, 30 Mar 2025 23:29:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:57.216105
- Title: A Constrained Multi-Agent Reinforcement Learning Approach to Autonomous Traffic Signal Control
- Title(参考訳): 自律交通信号制御のための制約付きマルチエージェント強化学習手法
- Authors: Anirudh Satheesh, Keenan Powell,
- Abstract要約: 本稿では,Lagrange Cost Estimator (MAPPO-LCE) を用いたMulti-Agent Proximal Policy Optimization というアルゴリズムを提案する。
MAPPO-LCEは,すべての環境および交通制約に対して,3つのベースラインMARLアルゴリズムより優れていることを示す。
この結果から,制約付きMARLは,現実の交通ネットワークにスケーラブルで効率的なATSC手法をデプロイする上で,トラヒックプランナにとって貴重なツールであることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic congestion in modern cities is exacerbated by the limitations of traditional fixed-time traffic signal systems, which fail to adapt to dynamic traffic patterns. Adaptive Traffic Signal Control (ATSC) algorithms have emerged as a solution by dynamically adjusting signal timing based on real-time traffic conditions. However, the main limitation of such methods is that they are not transferable to environments under real-world constraints, such as balancing efficiency, minimizing collisions, and ensuring fairness across intersections. In this paper, we view the ATSC problem as a constrained multi-agent reinforcement learning (MARL) problem and propose a novel algorithm named Multi-Agent Proximal Policy Optimization with Lagrange Cost Estimator (MAPPO-LCE) to produce effective traffic signal control policies. Our approach integrates the Lagrange multipliers method to balance rewards and constraints, with a cost estimator for stable adjustment. We also introduce three constraints on the traffic network: GreenTime, GreenSkip, and PhaseSkip, which penalize traffic policies that do not conform to real-world scenarios. Our experimental results on three real-world datasets demonstrate that MAPPO-LCE outperforms three baseline MARL algorithms by across all environments and traffic constraints (improving on MAPPO by 12.60%, IPPO by 10.29%, and QTRAN by 13.10%). Our results show that constrained MARL is a valuable tool for traffic planners to deploy scalable and efficient ATSC methods in real-world traffic networks. We provide code at https://github.com/Asatheesh6561/MAPPO-LCE.
- Abstract(参考訳): 近代都市における交通渋滞は、動的な交通パターンに適応できない従来の固定時間信号システムの限界によって悪化している。
リアルタイム交通条件に基づいて信号タイミングを動的に調整することで,ATSCアルゴリズムが解法として登場した。
しかし、そのような手法の主な制限は、効率のバランス、衝突の最小化、交差点間の公正性の確保など、現実の制約下での環境に転送できないことである。
本稿では,ATSC問題を制約付きマルチエージェント強化学習(MARL)問題とみなし,Lagrange Cost Estimator (MAPPO-LCE) を用いた新しいアルゴリズムを提案する。
提案手法は,報酬と制約のバランスをとるためにラグランジュ乗算器法と,安定な調整のためのコスト推定器を統合する。
また、グリーンタイム、グリーンスキープ、フェーズスキープの3つの制約を導入し、現実のシナリオに適合しないトラフィックポリシーを罰する。
実世界の3つのデータセットに対する実験結果から、MAPPO-LCEは、すべての環境と交通制約(MAPPOが12.60%、IPPOが10.29%、QTRANが13.10%)で、3つのベースラインMARLアルゴリズムより優れていることが示された。
この結果から,制約付きMARLは,現実の交通ネットワークにスケーラブルで効率的なATSC手法をデプロイする上で,トラヒックプランナにとって貴重なツールであることが示唆された。
私たちはhttps://github.com/Asatheesh6561/MAPPO-LCEでコードを提供しています。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
本研究は,大規模言語モデルを交通信号制御システムに統合する革新的なアプローチを導入する。
LLMを知覚と意思決定ツールのスイートで強化するハイブリッドフレームワークが提案されている。
シミュレーションの結果から,交通環境の多種性に適応するシステムの有効性が示された。
論文 参考訳(メタデータ) (2024-03-13T08:41:55Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Real-Time Network-Level Traffic Signal Control: An Explicit Multiagent
Coordination Method [9.761657423863706]
交通信号の効率的な制御 (TSC) は, 都市交通渋滞の低減に最も有用な方法の1つである。
強化学習(RL)手法を適用した最近の取り組みは、トラフィック状態を信号決定にリアルタイムでマッピングすることでポリシーをクエリすることができる。
本稿では,適応的,リアルタイム,ネットワークレベルのTSCを満足する,EMCに基づくオンライン計画手法を提案する。
論文 参考訳(メタデータ) (2023-06-15T04:08:09Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLightは交通信号制御のための新しいマルチエージェント強化学習手法である。
地元におけるエージェントの個人的限界貢献を推定することにより、協力的な交通規制政策を学習する。
我々は,2つの交通シミュレータの標準ベンチマークにおける最先端の交通信号制御手法に対して,トレーニングネットワークをベンチマークした。
論文 参考訳(メタデータ) (2023-04-20T12:41:25Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
本稿では,混在交通流を伴う複雑な交差点を扱うための学習に基づくアルゴリズムを提案する。
まず、学習過程における緑と赤の異なる速度モデルについて検討し、有限状態マシンを用いて異なるモードの光変換を扱う。
次に, 車両, 信号機, 歩行者, 自転車にそれぞれ異なる種類の距離制約を設計し, 制約された最適制御問題をフォーミュレートする。
論文 参考訳(メタデータ) (2021-08-30T07:55:32Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。