論文の概要: MKA: Leveraging Cross-Lingual Consensus for Model Abstention
- arxiv url: http://arxiv.org/abs/2503.23687v1
- Date: Mon, 31 Mar 2025 03:38:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:38:44.006815
- Title: MKA: Leveraging Cross-Lingual Consensus for Model Abstention
- Title(参考訳): MKA: モデル回避のための言語間合意の活用
- Authors: Sharad Duwal,
- Abstract要約: 本研究は, LLMの多言語的知識を活用して, 示唆された場合の棄却や回答の決定を通知することに焦点を当てる。
モデルの信頼性を校正する多言語パイプラインを開発し、不確実な場合にはそれを棄却する。
パイプラインのパフォーマンスはモデルや言語によって異なります。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reliability of LLMs is questionable even as they get better at more tasks. A wider adoption of LLMs is contingent on whether they are usably factual. And if they are not, on whether they can properly calibrate their confidence in their responses. This work focuses on utilizing the multilingual knowledge of an LLM to inform its decision to abstain or answer when prompted. We develop a multilingual pipeline to calibrate the model's confidence and let it abstain when uncertain. We run several multilingual models through the pipeline to profile them across different languages. We find that the performance of the pipeline varies by model and language, but that in general they benefit from it. This is evidenced by the accuracy improvement of $71.2\%$ for Bengali over a baseline performance without the pipeline. Even a high-resource language like English sees a $15.5\%$ improvement. These results hint at possible further improvements.
- Abstract(参考訳): LLMの信頼性は、より多くのタスクがより良くなったとしても疑わしい。
LLMのより広範な採用は、それらが有効に事実であるかどうかに焦点が当てられている。
そしてもしそうでなければ、彼らの反応に対する信頼を適切に調整できるかどうかです。
本研究は, LLMの多言語知識を活用して, 示唆された場合の棄却や回答の決定を通知することに焦点を当てる。
モデルの信頼性を校正する多言語パイプラインを開発し、不確実な場合にはそれを棄却する。
パイプラインを通して複数の多言語モデルを実行し、異なる言語でプロファイルします。
パイプラインのパフォーマンスはモデルや言語によって異なります。
これは、パイプラインなしでのベースラインのパフォーマンスに対して、Bengaliが$71.2\%の精度向上によって証明されている。
英語のような高リソース言語でさえ、$15.5\%の改善がある。
これらの結果はさらなる改善を示唆している。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間の対応する概念、すなわち言語を横断的に関連付けることができるだろうか?
本研究は,言語横断的タスクにおける最先端LLMの評価である。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
この作業は、NLPタスクから実際のユーザクエリまで、評価を拡張します。
深い言語理解を必要とする文化関連のタスクでは、ネイティブ言語のプロンプトがより有望になる傾向があります。
論文 参考訳(メタデータ) (2024-03-15T12:47:39Z) - Evaluating the Elementary Multilingual Capabilities of Large Language Models with MultiQ [16.637598165238934]
大規模言語モデル(LLM)は、世界中の英語話者の大多数を含むすべての人にサービスを提供する必要がある。
近年の研究では、意図した用途に制限があるにもかかわらず、多くの言語でLSMを促すことが示されている。
我々は、27.4kのテスト質問に答える基本的なオープンエンド質問のための新しい銀標準ベンチマークであるMultiQを紹介する。
論文 参考訳(メタデータ) (2024-03-06T16:01:44Z) - On the Calibration of Multilingual Question Answering LLMs [57.296161186129545]
複数の多言語大言語モデル(MLLM)のキャリブレーションを様々な質問応答タスクでベンチマークする。
本研究では,分布内,分布外,言語間移動設定におけるキャリブレーションの異なる次元について検討する。
LlaMa2のようなデコーダのみのLLMでは、コンテキスト内学習は多言語データの信頼性校正を改善する。
論文 参考訳(メタデータ) (2023-11-15T03:29:02Z) - Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions [68.01449013641532]
大規模事前学習言語モデル(LLM)は多言語翻訳において強力な能力を示している。
本稿では,多言語事前学習言語モデルであるXGLM-7Bを微調整して,多言語翻訳を行う方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T12:00:24Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。