論文の概要: Assessing Code Understanding in LLMs
- arxiv url: http://arxiv.org/abs/2504.00065v1
- Date: Mon, 31 Mar 2025 16:08:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:25:23.481377
- Title: Assessing Code Understanding in LLMs
- Title(参考訳): LLMにおけるコード理解の評価
- Authors: Cosimo Laneve, Alvise Spanò, Dalila Ressi, Sabina Rossi, Michele Bugliesi,
- Abstract要約: 大規模言語モデルでは、文脈が提供されない場合の41%、単純な文脈が与えられた場合の29%で意味的等価性を判断できないことを示す。
精度を向上させるため,プログラム理解をより堅牢にするために,LLMをコード最適化ツールに統合することを提唱する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present an empirical evaluation of Large Language Models in code understanding associated with non-trivial, semantic-preserving program transformations such as copy propagation or constant folding. Our findings show that LLMs fail to judge semantic equivalence in approximately 41\% of cases when no context is provided and in 29\% when given a simple generic context. To improve accuracy, we advocate integrating LLMs with code-optimization tools to enhance training and facilitate more robust program understanding.
- Abstract(参考訳): コード理解における大規模言語モデルの実証的評価を,コピーの伝播や一定の折り畳みといった非自明な意味保存型プログラム変換に関連付ける。
以上の結果から,LLMは文脈が提供されない場合の約41 %,単純な文脈が与えられた場合の29 %において意味的等価性を判断できないことがわかった。
精度を向上させるため,プログラム理解をより堅牢にするために,LLMをコード最適化ツールに統合することを提唱する。
関連論文リスト
- Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
大規模言語モデル(LLM)は、コンテキスト内学習(ICL)を通じて、様々なタスクで優れる
In-Context Contrastive Decoding (ICCD)を導入する。
ICCDは、正と負のインコンテキストの例の出力分布を対比することで、入力ラベルマッピングを強調する。
論文 参考訳(メタデータ) (2025-02-19T14:04:46Z) - Rethinking Semantic Parsing for Large Language Models: Enhancing LLM Performance with Semantic Hints [20.844061807562436]
本稿では,意味的ヒントをプロンプト内に埋め込む新しいプロンプト手法であるSENSEを提案する。
実験の結果、SENSE は様々なタスクで LLM のパフォーマンスを継続的に改善していることがわかった。
論文 参考訳(メタデータ) (2024-09-22T14:35:09Z) - An Empirical Study on Capability of Large Language Models in Understanding Code Semantics [4.638578225024275]
コードのための大規模言語モデル(コードLLM)は、様々なソフトウェア工学(SE)タスクで顕著なパフォーマンスを示している。
本稿では,コード意味論の理解におけるLLMの能力を評価するためのフレームワークであるEMPICAを紹介する。
論文 参考訳(メタデータ) (2024-07-04T03:40:58Z) - Is In-Context Learning Sufficient for Instruction Following in LLMs? [38.29072578390376]
実効性はあるものの, MT-Bench の命令微調整と比較すると, ICL とAL とのアライメントは依然として不十分であることがわかった。
我々は、我々の知識、ICLの体系的比較、低データ体制における命令追従のための命令微調整(IFT)を初めて提供する。
論文 参考訳(メタデータ) (2024-05-30T09:28:56Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - $\forall$uto$\exists$val: Autonomous Assessment of LLMs in Formal Synthesis and Interpretation Tasks [21.12437562185667]
本稿では,形式構文を自然言語に翻訳する際のLLM評価のスケールアップ手法を提案する。
我々は、文脈自由文法(CFG)を用いて、その場で配布外のデータセットを生成する。
我々はまた、このパラダイムの実現可能性と拡張性を示すために、複数のSOTAクローズドおよびオープンソースLCMの評価を行う。
論文 参考訳(メタデータ) (2024-03-27T08:08:00Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
大言語モデル(LLM)は、単語の意味を分散意味論の形でエンコードする。
近年の研究では、LLMは意図しない、一貫性のない、あるいは間違ったテキストを出力として生成する傾向があることが示されている。
本稿では,LLMとクラウドソースの知識表現を体系的に組み合わせた新しいアンサンブル学習手法であるInterpretable Ensemble Representation Learning (IERL)を提案する。
論文 参考訳(メタデータ) (2023-06-24T05:02:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。