論文の概要: Few-Shot Generation of Brain Tumors for Secure and Fair Data Sharing
- arxiv url: http://arxiv.org/abs/2504.00150v1
- Date: Mon, 31 Mar 2025 18:59:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:22:19.845081
- Title: Few-Shot Generation of Brain Tumors for Secure and Fair Data Sharing
- Title(参考訳): 安全・公平なデータ共有のための脳腫瘍の少数ショット生成
- Authors: Yongyi Shi, Ge Wang,
- Abstract要約: 本研究では,プライバシを保ちながら脳腫瘍像を合成する分散型小ショット生成モデル(DFGM)を提案する。
DFGMは、複数の医療センターから公開された共有可能な健康な画像とプライベートな腫瘍データを調和させ、腫瘍前景と健康な背景を混ぜて新しいデータセットを構築する。
UNetを用いてDFGMの脳腫瘍セグメンテーションにおける有効性を評価し,Diceスコアの改善はデータ拡張で3.9%,フェアネスでは4.6%であった。
- 参考スコア(独自算出の注目度): 5.101848799297469
- License:
- Abstract: Leveraging multi-center data for medical analytics presents challenges due to privacy concerns and data heterogeneity. While distributed approaches such as federated learning has gained traction, they remain vulnerable to privacy breaches, particularly in sensitive domains like medical imaging. Generative models, such as diffusion models, enhance privacy by synthesizing realistic data. However, they are prone to memorization, especially when trained on small datasets. This study proposes a decentralized few-shot generative model (DFGM) to synthesize brain tumor images while fully preserving privacy. DFGM harmonizes private tumor data with publicly shareable healthy images from multiple medical centers, constructing a new dataset by blending tumor foregrounds with healthy backgrounds. This approach ensures stringent privacy protection and enables controllable, high-quality synthesis by preserving both the healthy backgrounds and tumor foregrounds. We assess DFGM's effectiveness in brain tumor segmentation using a UNet, achieving Dice score improvements of 3.9% for data augmentation and 4.6% for fairness on a separate dataset.
- Abstract(参考訳): 医療分析にマルチセンターデータを活用することは、プライバシの懸念とデータの異質性による課題を提起する。
フェデレートラーニングのような分散アプローチは注目を集めているが、プライバシー侵害、特に医用画像のような繊細な領域では弱いままである。
拡散モデルのような生成モデルは、現実的なデータを合成することによってプライバシーを高める。
しかし、特に小さなデータセットでトレーニングされた場合、暗記しがちである。
本研究は,脳腫瘍像を完全保存しながら合成する分散型小ショット生成モデル(DFGM)を提案する。
DFGMは、複数の医療センターから公開された共有可能な健康な画像とプライベートな腫瘍データを調和させ、腫瘍前景と健康な背景を混ぜて新しいデータセットを構築する。
このアプローチは、厳格なプライバシ保護を保証し、健康な背景と腫瘍前景の両方を保存することによって、制御可能な高品質な合成を可能にする。
UNetを用いてDFGMの脳腫瘍セグメンテーションにおける有効性を評価し,Diceスコアの改善はデータ拡張で3.9%,フェアネスでは4.6%であった。
関連論文リスト
- FedDP: Privacy-preserving method based on federated learning for histopathology image segmentation [2.864354559973703]
本稿では,医用画像データの分散特性とプライバシ感受性について,フェデレート学習フレームワークを用いて検討する。
提案手法であるFedDPは,がん画像データのプライバシーを効果的に保護しつつ,モデルの精度に最小限の影響を与える。
論文 参考訳(メタデータ) (2024-11-07T08:02:58Z) - 3D MRI Synthesis with Slice-Based Latent Diffusion Models: Improving Tumor Segmentation Tasks in Data-Scarce Regimes [2.8498944632323755]
本稿では,ボリュームデータ生成の複雑さに対処するスライスに基づく遅延拡散アーキテクチャを提案する。
この手法は,医療用画像と関連するマスクの同時分布モデルを拡張し,データスカース体制下での同時生成を可能にする。
構造は, 大きさ, 形状, 相対位置などの腫瘍特性によって調節できるため, 腫瘍の多様性は様々である。
論文 参考訳(メタデータ) (2024-06-08T09:53:45Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
安静時MRI機能(rs-fMRI)は、神経疾患の分析を助けるために多地点で研究されている。
ソース領域とターゲット領域の間のfMRIの不均一性を低減するための多くの手法が提案されている。
しかし、マルチサイト研究における懸念やデータストレージの負担のため、ソースデータの取得は困難である。
我々は、fMRI解析のためのソースフリー協調ドメイン適応フレームワークを設計し、事前訓練されたソースモデルとラベルなしターゲットデータのみにアクセスできるようにする。
論文 参考訳(メタデータ) (2023-08-24T01:30:18Z) - Differential Privacy for Adaptive Weight Aggregation in Federated Tumor
Segmentation [0.16746114653388383]
Federated Learning(FL)は、個々のクライアントデータのプライバシを尊重しながら、公平なグローバルモデルを作成することによって、プライバシを保護する分散機械学習アプローチである。
医用画像セグメンテーションにおける差分プライバシー(DP)統合ディープラーニングフレームワークを提案する。
我々は, 類似度重み付け法(SimAgg)を, 脳腫瘍セグメント化のための差分プライベート類似度重み付けアルゴリズムDP-SimAggアルゴリズムに拡張する。
論文 参考訳(メタデータ) (2023-08-01T21:59:22Z) - Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging [47.99192239793597]
我々は,AIモデルのプライバシ保護トレーニングが,非プライベートトレーニングと比較して精度と公平性に与える影響を評価した。
我々の研究は、実際の臨床データセットの困難な現実的な状況下では、診断深層学習モデルのプライバシー保護トレーニングは、優れた診断精度と公正さで可能であることを示しています。
論文 参考訳(メタデータ) (2023-02-03T09:49:13Z) - Brain Tumor Synthetic Data Generation with Adaptive StyleGANs [6.244557340851846]
本稿では,脳腫瘍MRI画像の生成手法について述べる。
その結果, 提案手法は脳腫瘍の分布を学習できることがわかった。
このアプローチは、腫瘍のある現実的な脳MRIを生成することで、限られたデータ可用性に対処することができる。
論文 参考訳(メタデータ) (2022-12-04T09:01:33Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - A Deep Learning Approach to Private Data Sharing of Medical Images Using
Conditional GANs [1.2099130772175573]
COSENTYX (secukinumab) Ankylosing Spondylitis の臨床的検討に基づいて合成データセットを生成する方法を提案する。
本稿では, 画像の忠実度, サンプルの多様性, データセットのプライバシーの3つの重要な指標について, 合成データセットを生成し, その特性を詳細に分析する手法を提案する。
論文 参考訳(メタデータ) (2021-06-24T17:24:06Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
本稿では,GAN(Cycle-Consistency Generative Adversarial Networks)を用いた医用画像生成のためのデータ拡張手法を提案する。
提案モデルでは,正常画像から腫瘍画像を生成することができ,腫瘍画像から正常画像を生成することもできる。
本研究では,従来のデータ拡張手法と合成画像を用いた分類モデルを用いて,実画像を用いた分類モデルを訓練する。
論文 参考訳(メタデータ) (2020-11-15T14:01:24Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-06-15T10:01:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。