論文の概要: Leveraging Contrast Information for Efficient Document Shadow Removal
- arxiv url: http://arxiv.org/abs/2504.00385v1
- Date: Tue, 01 Apr 2025 03:06:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:22:12.797775
- Title: Leveraging Contrast Information for Efficient Document Shadow Removal
- Title(参考訳): 効率的な文書陰影除去のためのコントラスト情報の活用
- Authors: Yifan Liu, Jiancheng Huang, Na Liu, Mingfu Yan, Yi Huang, Shifeng Chen,
- Abstract要約: ドキュメントのシャドーは、デジタル化プロセスにおける大きな障害です。
コントラスト表現による文書のシャドウ除去手法を提案する。
- 参考スコア(独自算出の注目度): 15.35209972174416
- License:
- Abstract: Document shadows are a major obstacle in the digitization process. Due to the dense information in text and patterns covered by shadows, document shadow removal requires specialized methods. Existing document shadow removal methods, although showing some progress, still rely on additional information such as shadow masks or lack generalization and effectiveness across different shadow scenarios. This often results in incomplete shadow removal or loss of original document content and tones. Moreover, these methods tend to underutilize the information present in the original shadowed document image. In this paper, we refocus our approach on the document images themselves, which inherently contain rich information.We propose an end-to-end document shadow removal method guided by contrast representation, following a coarse-to-fine refinement approach. By extracting document contrast information, we can effectively and quickly locate shadow shapes and positions without the need for additional masks. This information is then integrated into the refined shadow removal process, providing better guidance for network-based removal and feature fusion. Extensive qualitative and quantitative experiments show that our method achieves state-of-the-art performance.
- Abstract(参考訳): ドキュメントのシャドーは、デジタル化プロセスにおける大きな障害です。
テキストの密集した情報と影で覆われたパターンのため、文書のシャドウ除去には特殊な方法が必要である。
既存の文書のシャドウ除去手法は、いくつかの進展を示しているが、依然としてシャドウマスクなどの追加情報や、さまざまなシャドウシナリオにおける一般化と効果の欠如などに依存している。
これはしばしば、未完成なシャドウ削除やオリジナルのドキュメントの内容やトーンの喪失をもたらす。
さらに、これらの手法は、元のシャドウ文書画像に存在する情報を未利用にしがちである。
本稿では,リッチな情報を含む文書画像自体にアプローチを再焦点化し,コントラスト表現によってガイドされる文書のシャドウ除去手法を提案する。
文書のコントラスト情報を抽出することにより,マスクの追加を必要とせずに,影の形状や位置を効果的かつ迅速に特定できる。
この情報は、改良されたシャドウ除去プロセスに統合され、ネットワークベースの除去と機能融合のためのより良いガイダンスを提供する。
定性的かつ定量的な実験により,本手法が最先端の性能を達成することを示す。
関連論文リスト
- MetaShadow: Object-Centered Shadow Detection, Removal, and Synthesis [64.00425120075045]
シャドウは画像編集アプリケーションでは過小評価されるか無視されることが多く、編集結果のリアリズムが制限される。
本稿では,自然画像中の影の検出・除去・制御が可能な3-in-one多元性フレームワークであるMetaShadowを紹介する。
論文 参考訳(メタデータ) (2024-12-03T18:04:42Z) - Shadow Removal Refinement via Material-Consistent Shadow Edges [33.8383848078524]
同じ材料で領域を横断する影の縁の両側には、影を適切に取り除けば、原色とテクスチャは同一であるべきである。
画像セグメンテーション基盤モデルであるSAMを微調整し、影不変セグメンテーションを生成し、材料一貫性のあるシャドウエッジを抽出する。
本手法は,より難易度の高い画像に対して,影除去結果の改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-09-10T20:16:28Z) - Single-Image Shadow Removal Using Deep Learning: A Comprehensive Survey [78.84004293081631]
影のパターンは任意で変化しており、しばしば非常に複雑な痕跡構造を持つ。
影による劣化は空間的に不均一であり、照度と影と非陰影領域間の色に矛盾が生じている。
この分野での最近の開発は、主にディープラーニングベースのソリューションによって進められている。
論文 参考訳(メタデータ) (2024-07-11T20:58:38Z) - Latent Feature-Guided Diffusion Models for Shadow Removal [50.02857194218859]
本稿では,拡散過程における影領域の詳細を段階的に洗練する,有望なアプローチとして拡散モデルの利用を提案する。
シャドウフリー画像の特徴を継承する学習された潜在特徴空間を条件付けすることで,この処理を改善する。
AISTDデータセット上でRMSEを13%向上させる手法の有効性を示す。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
シングルイメージのシャドー削除は、まだ解決されていない重要なタスクである。
既存のディープラーニングベースのアプローチのほとんどは、シャドウを直接削除しようとするが、シャドウをうまく扱えない。
本稿では,影を段階的に除去する簡易かつ効果的なプログレッシブ・リカレント・ネットワーク(PRNet)を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:42:45Z) - DocDeshadower: Frequency-Aware Transformer for Document Shadow Removal [36.182923899021496]
現在のシャドウ除去技術は、さまざまなシャドウインテンシティの扱いやドキュメントの保存において制限に直面している。
ラプラシアンピラミッド上に構築された新しい多周波トランスフォーマーモデルDocDeshadowerを提案する。
DocDeshadowerは最先端の手法に比べて優れた性能を示している。
論文 参考訳(メタデータ) (2023-07-28T05:35:37Z) - ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal [53.01990632289937]
本稿では,文書陰影除去のためのトランスフォーマーモデルを提案する。
シャドウとシャドウフリーの両方の領域で、シャドウコンテキストエンコーディングとデコードを使用する。
論文 参考訳(メタデータ) (2022-11-30T01:46:29Z) - Self-Supervised Shadow Removal [130.6657167667636]
条件付きマスクを用いた自己教師付き学習による教師なしシングルイメージシャドウ除去ソリューションを提案する。
既存の文献とは対照的に、一対のシャドウとシャドウのない画像は必要とせず、自己スーパービジョンに頼り、画像にシャドウを取り除いて追加するために深いモデルを共同で学習する。
論文 参考訳(メタデータ) (2020-10-22T11:33:41Z) - From Shadow Segmentation to Shadow Removal [34.762493656937366]
シャドウとシャドウフリーの画像のペアの必要性は、シャドウ除去データセットのサイズと多様性を制限している。
本研究では,影画像から抽出した陰影と非陰影パッチのみを用いて,陰影除去法を提案する。
論文 参考訳(メタデータ) (2020-08-01T14:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。