Bi-Grid Reconstruction for Image Anomaly Detection
- URL: http://arxiv.org/abs/2504.00609v1
- Date: Tue, 01 Apr 2025 10:06:38 GMT
- Title: Bi-Grid Reconstruction for Image Anomaly Detection
- Authors: Huichuan Huang, Zhiqing Zhong, Guangyu Wei, Yonghao Wan, Wenlong Sun, Aimin Feng,
- Abstract summary: This paper introduces textbfGRAD: Bi-textbfGrid textbfReconstruction for Image textbfAnomaly textbfDetection.<n>It employs two continuous grids to enhance anomaly detection from both normal and abnormal perspectives.<n>It excels in overall accuracy and in discerning subtle differences, demonstrating its superiority over existing methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In image anomaly detection, significant advancements have been made using un- and self-supervised methods with datasets containing only normal samples. However, these approaches often struggle with fine-grained anomalies. This paper introduces \textbf{GRAD}: Bi-\textbf{G}rid \textbf{R}econstruction for Image \textbf{A}nomaly \textbf{D}etection, which employs two continuous grids to enhance anomaly detection from both normal and abnormal perspectives. In this work: 1) Grids as feature repositories that improve generalization and mitigate the Identical Shortcut (IS) issue; 2) An abnormal feature grid that refines normal feature boundaries, boosting detection of fine-grained defects; 3) The Feature Block Paste (FBP) module, which synthesizes various anomalies at the feature level for quick abnormal grid deployment. GRAD's robust representation capabilities also allow it to handle multiple classes with a single model. Evaluations on datasets like MVTecAD, VisA, and GoodsAD show significant performance improvements in fine-grained anomaly detection. GRAD excels in overall accuracy and in discerning subtle differences, demonstrating its superiority over existing methods.
Related papers
- Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.
We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.
Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - CNC: Cross-modal Normality Constraint for Unsupervised Multi-class Anomaly Detection [34.675120608542265]
We propose a novel approach that leverages class-agnostic learnable prompts to guide the decoded features towards a normal textual representation.
Our method achieves competitive performance on the MVTec AD and VisA datasets, demonstrating its effectiveness.
arXiv Detail & Related papers (2024-12-31T08:43:44Z) - UMGAD: Unsupervised Multiplex Graph Anomaly Detection [40.17829938834783]
We propose a novel Unsupervised Multiplex Graph Anomaly Detection method, named UMGAD.<n>We first learn multi-relational correlations among nodes in multiplex heterogeneous graphs.<n>Then, to further extract abnormal information, we generate attribute-level and subgraph-level augmented-view graphs.<n>Finally, we learn to optimize node attributes and structural features through contrastive learning between original-view and augmented-view graphs.
arXiv Detail & Related papers (2024-11-19T15:15:45Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.<n> equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.<n>Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Continuous Memory Representation for Anomaly Detection [24.58611060347548]
CRAD is a novel anomaly detection method for representing normal features within a "continuous" memory.
In an evaluation using the MVTec AD dataset, CRAD significantly outperforms the previous state-of-the-art method by reducing 65.0% of the error for multi-class unified anomaly detection.
arXiv Detail & Related papers (2024-02-28T12:38:44Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
We introduce a novel framework called Anomaly-Denoised Autoencoders for Graph Anomaly Detection (ADA-GAD)
In the first stage, we design a learning-free anomaly-denoised augmentation method to generate graphs with reduced anomaly levels.
In the next stage, the decoders are retrained for detection on the original graph.
arXiv Detail & Related papers (2023-12-22T09:02:01Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - UniFormaly: Towards Task-Agnostic Unified Framework for Visual Anomaly
Detection [6.260747047974035]
We present UniFormaly, a universal and powerful anomaly detection framework.
We emphasize the necessity of our off-the-shelf approach by pointing out a suboptimal issue in online encoder-based methods.
UniFormaly achieves outstanding results on various tasks and datasets.
arXiv Detail & Related papers (2023-07-24T06:04:12Z) - Hard-normal Example-aware Template Mutual Matching for Industrial Anomaly Detection [78.734927709231]
Anomaly detectors are widely used in industrial manufacturing to detect and localize unknown defects in query images.<n>These detectors are trained on anomaly-free samples and have successfully distinguished anomalies from most normal samples.<n>However, hard-normal examples are scattered and far apart from most normal samples, and thus they are often mistaken for anomalies by existing methods.
arXiv Detail & Related papers (2023-03-28T17:54:56Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
We propose a framework for building anomaly detectors using normal training data only.
We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations.
Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects.
arXiv Detail & Related papers (2021-04-08T19:04:55Z) - Unsupervised Two-Stage Anomaly Detection [18.045265572566276]
Anomaly detection from a single image is challenging since anomaly data is always rare and can be with highly unpredictable types.
We propose a two-stage approach, which generates high-fidelity yet anomaly-free reconstructions.
Our method outperforms state-of-the-arts on four anomaly detection datasets.
arXiv Detail & Related papers (2021-03-22T08:57:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.