Experimental realization and synchronization of a quantum van der Pol oscillator
- URL: http://arxiv.org/abs/2504.00751v1
- Date: Tue, 01 Apr 2025 13:02:50 GMT
- Title: Experimental realization and synchronization of a quantum van der Pol oscillator
- Authors: Yi Li, Zihan Xie, Xiaodong Yang, Yue Li, Xingyu Zhao, Xu Cheng, Xinhua Peng, Jun Li, Eric Lutz, Yiheng Lin, Jiangfeng Du,
- Abstract summary: We present a paradigmatic autonomous quantum driven-dissipative system with nonlinear damping, using a single trapped atom.<n>We demonstrate the existence of a quantum limit cycle in phase space in the absence of a drive.<n>We additionally show that synchronization can be enhanced with the help of squeezing perpendicular to the direction of the drive and, counterintuitively, linear dissipation.
- Score: 18.069593561319177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical self-sustained oscillators, that generate periodic motion without periodic external forcing, are ubiquitous in science and technology. The realization of nonclassical self-oscillators is an important goal of quantum physics. We here present the experimental implementation of a quantum van der Pol oscillator, a paradigmatic autonomous quantum driven-dissipative system with nonlinear damping, using a single trapped atom. We demonstrate the existence of a quantum limit cycle in phase space in the absence of a drive and the occurrence of quantum synchronization when the nonlinear oscillator is externally driven. We additionally show that synchronization can be enhanced with the help of squeezing perpendicular to the direction of the drive and, counterintuitively, linear dissipation. We also observe the bifurcation to a bistable phase-space distribution for large squeezing. Our results pave the way for the exploration of self-sustained quantum oscillators and their application to quantum technology.
Related papers
- Beyond Spin: Torsion-Driven Nonlinearity in Spinless Quantum Mechanics [0.0]
We investigate the previously unexplored quantum dynamics of non-relativistic, spinless particles propagating in curved spaces with torsion.
Our results reveal a previously unrecognized mechanism by which torsion, as predicted in certain extensions of general relativity, can influence quantum systems.
arXiv Detail & Related papers (2025-04-13T19:13:35Z) - Generating arbitrary superpositions of nonclassical quantum harmonic oscillator states [0.0]
We create arbitrary superpositions of nonclassical and non-Gaussian states of a quantum harmonic oscillator using the motion of a trapped ion coupled to its internal spin states.
We observe the nonclassical nature of these states in the form of Wigner negativity following a full state reconstruction.
arXiv Detail & Related papers (2024-09-05T12:45:57Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Coherent coupling and non-destructive measurement of trapped-ion mechanical oscillators [0.0]
We show the coherent exchange of single motional quanta between spectrally separated harmonic motional modes of a trapped-ion crystal.
Our work enhances the suitability of trapped-ion motion for continuous-variable quantum computing and error correction.
arXiv Detail & Related papers (2022-05-30T04:04:26Z) - Quantum Turing bifurcation: Transition from quantum amplitude death to
quantum oscillation death [11.353329565587574]
We show that a homogeneous steady state is transformed into an inhomogeneous steady state through the Turing bifurcation.
Our study explores the paradigmatic Turing bifurcation at the quantum-classical interface and opens up the door towards its broader understanding.
arXiv Detail & Related papers (2021-06-15T05:02:54Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Quantum reservoir computing with a single nonlinear oscillator [0.0]
We propose continuous variable quantum reservoir computing in a single nonlinear oscillator.
We demonstrate quantum-classical performance improvement, and identify its likely source: the nonlinearity of quantum measurement.
We study how the performance of our quantum reservoir depends on Hilbert space dimension, how it is impacted by injected noise, and briefly comment on its experimental implementation.
arXiv Detail & Related papers (2020-04-30T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.