Privacy-Preserving Transfer Learning for Community Detection using Locally Distributed Multiple Networks
- URL: http://arxiv.org/abs/2504.00890v1
- Date: Tue, 01 Apr 2025 15:19:07 GMT
- Title: Privacy-Preserving Transfer Learning for Community Detection using Locally Distributed Multiple Networks
- Authors: Xiao Guo, Xuming He, Xiangyu Chang, Shujie Ma,
- Abstract summary: We develop a new spectral clustering-based method called TransNet for transfer learning in community detection of network data.<n>We use auxiliary source networks, which are heterogeneous, privacy-preserved, and locally stored across various sources.<n>We show that TransNet performs better than the estimator using only the target network and the estimator using only the weighted source networks.
- Score: 18.14846483414994
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper develops a new spectral clustering-based method called TransNet for transfer learning in community detection of network data. Our goal is to improve the clustering performance of the target network using auxiliary source networks, which are heterogeneous, privacy-preserved, and locally stored across various sources. The edges of each locally stored network are perturbed using the randomized response mechanism to achieve differential privacy. Notably, we allow the source networks to have distinct privacy-preserving and heterogeneity levels as often desired in practice. To better utilize the information from the source networks, we propose a novel adaptive weighting method to aggregate the eigenspaces of the source networks multiplied by adaptive weights chosen to incorporate the effects of privacy and heterogeneity. We propose a regularization method that combines the weighted average eigenspace of the source networks with the eigenspace of the target network to achieve an optimal balance between them. Theoretically, we show that the adaptive weighting method enjoys the error-bound-oracle property in the sense that the error bound of the estimated eigenspace only depends on informative source networks. We also demonstrate that TransNet performs better than the estimator using only the target network and the estimator using only the weighted source networks.
Related papers
- Distributionally Robust Learning for Multi-source Unsupervised Domain Adaptation [9.359714425373616]
Empirical risk often performs poorly when the distribution of the target domain differs from those of source domains.<n>We develop an unsupervised domain adaptation approach that leverages labeled data from multiple source domains and unlabeled data from the target domain.
arXiv Detail & Related papers (2023-09-05T13:19:40Z) - Privacy-Preserving Community Detection for Locally Distributed Multiple Networks [11.693304974549893]
We propose a new method for consensus community detection and estimation in a multi-layer block model.
A novel algorithm named Distributed Spectral Clustering (ppDSC) is developed.
arXiv Detail & Related papers (2023-06-27T08:36:13Z) - RAIN: RegulArization on Input and Network for Black-Box Domain
Adaptation [80.03883315743715]
Source-free domain adaptation transits the source-trained model towards target domain without exposing the source data.
This paradigm is still at risk of data leakage due to adversarial attacks on the source model.
We propose a novel approach named RAIN (RegulArization on Input and Network) for Black-Box domain adaptation from both input-level and network-level regularization.
arXiv Detail & Related papers (2022-08-22T18:18:47Z) - Optimal resource allocation for flexible-grid entanglement distribution
networks [0.0]
We introduce a general model for entanglement distribution based on frequency-polarization hyperentangled biphotons.
We derive upper bounds on fidelity and entangled bit rate for networks comprising one-to-one user connections.
arXiv Detail & Related papers (2022-04-13T21:31:47Z) - Multi-Source Domain Adaptation for Object Detection [52.87890831055648]
We propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN)
DMSN can simultaneously enhance domain innative and preserve discriminative power.
We develop a novel pseudo learning algorithm to approximate optimal parameters of pseudo target subset.
arXiv Detail & Related papers (2021-06-30T03:17:20Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc
Wireless Networks [122.42812336946756]
We design an unsupervised learning method based on Aggregation Graph Neural Networks (Agg-GNNs)
We capture the asynchrony by modeling the activation pattern as a characteristic of each node and train a policy-based resource allocation method.
arXiv Detail & Related papers (2020-11-05T03:38:36Z) - Uncertainty Estimation and Sample Selection for Crowd Counting [87.29137075538213]
We present a method for image-based crowd counting that can predict a crowd density map together with the uncertainty values pertaining to the predicted density map.
A key advantage of our method over existing crowd counting methods is its ability to quantify the uncertainty of its predictions.
We show that our sample selection strategy drastically reduces the amount of labeled data needed to adapt a counting network trained on a source domain to the target domain.
arXiv Detail & Related papers (2020-09-30T03:40:07Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
This paper investigates the optimal resource allocation in free space optical (FSO) fronthaul networks.
We consider the graph neural network (GNN) for the policy parameterization to exploit the FSO network structure.
The primal-dual learning algorithm is developed to train the GNN in a model-free manner, where the knowledge of system models is not required.
arXiv Detail & Related papers (2020-06-26T14:20:48Z) - Multi-source Domain Adaptation via Weighted Joint Distributions Optimal
Transport [35.37752209765114]
We propose a new approach to domain adaptation on unlabeled target datasets.
We exploit the diversity of source distributions by tuning their weights to the target task at hand.
Our method, named Weighted Joint Distribution Optimal Transport (WJDOT), aims at finding simultaneously an Optimal Transport-based alignment between the source and target distributions.
arXiv Detail & Related papers (2020-06-23T12:33:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.