論文の概要: Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization
- arxiv url: http://arxiv.org/abs/2504.01018v2
- Date: Tue, 07 Oct 2025 07:44:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-08 15:38:20.080347
- Title: Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization
- Title(参考訳): 自己追従RAG:知識言語化による選択的検索
- Authors: Di Wu, Jia-Chen Gu, Kai-Wei Chang, Nanyun Peng,
- Abstract要約: 既存のアプローチは、大規模言語モデル(LLM)の固有の知識を過小評価している。
本稿では,選択検索と知識の言語化を結びつける新しいフレームワークであるSelf-Routing RAGを提案する。
SR-RAGは検索回数を29%削減し、性能は5.1%向上した。
- 参考スコア(独自算出の注目度): 95.85537087475882
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Selective retrieval improves the accuracy and efficiency of retrieval-augmented generation (RAG) by reducing distractions from low-quality retrievals. However, existing approaches underutilize the inherent knowledge of large language models (LLMs), leading to suboptimal retrieval decisions and degraded generation performance. To bridge this gap, we propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization. SR-RAG enables an LLM to dynamically decide whether to retrieve external knowledge or verbalize its own parametric knowledge. To this end, we design a multi-task objective that jointly optimizes an LLM for knowledge source selection, knowledge verbalization, and response generation. SR-RAG further incorporates a nearest neighbor search mechanism at inference time to improve the accuracy of knowledge source decisions under domain shifts. Fine-tuning three LLMs with SR-RAG significantly improves both their response accuracy and reduces the inference latency. Compared to the strongest selective retrieval baseline, SR-RAG reduces the number of retrievals by 29% while improving performance by 5.1%.
- Abstract(参考訳): 選択検索は、低品質な検索からの逸脱を低減し、検索増強生成(RAG)の精度と効率を向上させる。
しかし、既存のアプローチは、大規模言語モデル(LLM)の固有の知識を弱め、最適下決定と劣化した生成性能をもたらす。
このギャップを埋めるために,選択的検索と知識の言語化を結合する新しいフレームワークであるSelf-Routing RAG(SR-RAG)を提案する。
SR-RAGは、LLMが外部知識を取得するか、あるいは独自のパラメトリック知識を言語化すべきかを動的に決定することを可能にする。
この目的のために,LLMを知識源選択,知識言語化,応答生成に共同で最適化するマルチタスク目的を設計する。
SR-RAGはさらに、ドメインシフト時の知識ソース決定の精度を向上させるために、推論時に最も近い近傍探索機構を組み込んでいる。
SR-RAGを用いた3つのLLMの微調整により、応答精度が向上し、推論遅延が低減される。
最も強い選択的検索ベースラインと比較して、SR-RAGは検索数を29%削減し、性能は5.1%向上した。
関連論文リスト
- Distilling a Small Utility-Based Passage Selector to Enhance Retrieval-Augmented Generation [77.07879255360342]
Retrieval-augmented Generation (RAG)は、取得した情報を組み込むことで、大規模言語モデル(LLM)を強化する。
RAGでは、重要度は実用性に移行し、正確な回答を生成するためのパスの有用性を考慮している。
提案手法は、ランク付けよりもユーティリティベースの選択に重点を置いており、固定しきい値を必要とせずに、特定のクエリに合わせた動的通過選択を可能にする。
本実験は, 実用性に基づく選択により, RAGの柔軟性とコスト効率が向上し, 計算コストが大幅に低減され, 応答品質が向上することを示した。
論文 参考訳(メタデータ) (2025-07-25T09:32:29Z) - RoseRAG: Robust Retrieval-augmented Generation with Small-scale LLMs via Margin-aware Preference Optimization [53.63439735067081]
大規模言語モデル(LLM)は目覚ましい性能を達成したが、高い計算コストとレイテンシに直面している。
Retrieval-augmented Generation (RAG) は、外部知識を統合するのに役立つが、不完全な検索は、SLMを誤解させるノイズを引き起こす可能性がある。
我々は、Margin-aware Preference Optimizationを通じて、SLMのための堅牢なRAGフレームワークであるRoseRAGを提案する。
論文 参考訳(メタデータ) (2025-02-16T04:56:53Z) - Optimizing Knowledge Integration in Retrieval-Augmented Generation with Self-Selection [72.92366526004464]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) がより正確で信頼性の高い応答を生成するのに有効であることが証明されている。
本稿では,自己選択型RAGフレームワークを提案する。このフレームワークでは,内部パラメトリック知識のみで生成されたペアの応答からLLMを選択できる。
論文 参考訳(メタデータ) (2025-02-10T04:29:36Z) - DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
我々はマルコフ決定過程(MDP)として検索強化推論をモデル化するDeepRAGを提案する。
クエリを反復的に分解することで、DeepRAGは外部知識を取得するか、あるいは各ステップでパラメトリック推論に依存するかを動的に決定する。
実験の結果、DeepRAGは解答精度を21.99%向上させ、検索強化推論の最適化の有効性を示した。
論文 参考訳(メタデータ) (2025-02-03T08:22:45Z) - Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models [31.769428095250912]
Auto-RAGは大規模言語モデル(LLM)の推論機能を中心とした自律的反復検索モデルである
本研究では,反復検索における推論に基づく意思決定命令を自律的に合成する手法を開発した。
Auto-RAGは自然言語で反復的な検索プロセスを表現し、解釈可能性を高める。
論文 参考訳(メタデータ) (2024-11-29T03:01:05Z) - Towards Multi-Source Retrieval-Augmented Generation via Synergizing Reasoning and Preference-Driven Retrieval [4.862780562808097]
既存のadaptive RAG (ARAG) システムは、適切なタイミングで適切なソースを選択することができないため、複数の検索ソースを効果的に探索するのに苦労している。
我々は,MSPRと呼ばれるマルチソースARAGフレームワークを提案し,推論と嗜好駆動型検索を相乗化して「いつ,何を検索すべきか」と「どの検索ソースを使うのか」を適応的に決定する。
論文 参考訳(メタデータ) (2024-11-01T15:50:58Z) - Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG [36.754491649652664]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)に外部の知識ソースを利用する権限を与える。
本稿では, 回収した「ハードネガティブ」の有害な影響について考察する。
これを緩和し、長文LLMベースのRAGの堅牢性を高めるために、トレーニングフリーとトレーニングベースの両方のアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-08T12:30:07Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)が外部知識を活用することを可能にする。
既存のRAGモデルは、LLMを受動的情報受信者として扱うことが多い。
人間の学習行動を模倣するマルチエージェントフレームワークであるActiveRAGを紹介する。
論文 参考訳(メタデータ) (2024-02-21T06:04:53Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
我々は、自己回帰検索拡張生成(Self-RAG)と呼ばれる新しいフレームワークを導入する。
自己RAGは、検索と自己回帰によってLMの品質と事実性を高める。
様々なタスクセットにおいて、最先端のLCMや検索強化モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-10-17T18:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。