Double-bracket algorithm for quantum signal processing without post-selection
- URL: http://arxiv.org/abs/2504.01077v2
- Date: Wed, 16 Apr 2025 11:49:19 GMT
- Title: Double-bracket algorithm for quantum signal processing without post-selection
- Authors: Yudai Suzuki, Bi Hong Tiang, Jeongrak Son, Nelly H. Y. Ng, Zoƫ Holmes, Marek Gluza,
- Abstract summary: Quantum signal processing (QSP) is a fundamental primitive in various quantum algorithms.<n>Despite its versatility, a potentially underappreciated challenge is that all systematic protocols for implementing QSP rely on post-selection.<n>We introduce a new formula for implementing QSP transformations of Hermitian matrices, which requires neither auxiliary qubits nor post-selection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum signal processing (QSP), a framework for implementing matrix-valued polynomials, is a fundamental primitive in various quantum algorithms. Despite its versatility, a potentially underappreciated challenge is that all systematic protocols for implementing QSP rely on post-selection. This can impose prohibitive costs for tasks when amplitude amplification cannot sufficiently improve the success probability. For example, in the context of ground-state preparation, this occurs when using a too poor initial state. In this work, we introduce a new formula for implementing QSP transformations of Hermitian matrices, which requires neither auxiliary qubits nor post-selection. Rather, using approximation to the exact unitary synthesis, we leverage the theory of the double-bracket quantum algorithms to provide a new quantum algorithm for QSP, termed Double-Bracket QSP (DB-QSP). The algorithm requires the energy and energetic variance of the state to be measured at each step and has a recursive structure, which leads to circuit depths that can grow super exponentially with the degree of the polynomial. With these strengths and caveats in mind, DB-QSP should be viewed as complementing the established QSP toolkit. In particular, DB-QSP can deterministically implement low-degree polynomials to "warm start" QSP methods involving post-selection.
Related papers
- Polynomial time constructive decision algorithm for multivariable quantum signal processing [0.7332146059733189]
Multivariable quantum signal processing (M-QSP) is proposed.
M-QSP interleaves signal operators corresponding to each variable with signal processing operators.
A classical algorithm is proposed to determine whether a given pair of Laurents can be implemented by M-QSP.
arXiv Detail & Related papers (2024-10-03T09:30:35Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Quantum Signal Processing with the one-dimensional quantum Ising model [0.0]
Quantum Signal Processing (QSP) has emerged as a promising framework to manipulate and determine properties of quantum systems.
We provide examples and applications of our approach in diverse fields ranging from space-time dual quantum circuits and quantum simulation, to quantum control.
arXiv Detail & Related papers (2023-09-08T18:01:37Z) - Semantic embedding for quantum algorithms [0.0]
A need has developed for an assurance of the correctness of high-level quantum algorithmic reasoning.
Many quantum algorithms have been unified and improved using quantum signal processing (QSP) and quantum singular value transformation (QSVT)
We show that QSP/QSVT can be treated and combined modularly, purely in terms of the functional transforms they embed.
We also identify existing quantum algorithms whose use of semantic embedding is implicit, spanning from distributed search to soundness in quantum cryptography.
arXiv Detail & Related papers (2023-04-27T17:55:40Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Realization of quantum signal processing on a noisy quantum computer [0.4593579891394288]
We propose a strategy to run an entire QSP protocol on noisy quantum hardware by carefully reducing overhead costs at each step.
We test the protocol by running the algorithm on the Quantinuum H1-1 trapped-ion quantum computer powered by Honeywell.
Our results are the first step in the experimental realization of QSP-based quantum algorithms.
arXiv Detail & Related papers (2023-03-09T19:00:17Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Efficient phase-factor evaluation in quantum signal processing [1.3614427997190908]
Quantum signal processing (QSP) is a powerful quantum algorithm to exactly implement matrixs on quantum computers.
There is so far no classically stable algorithm allowing computation of the phase factors that are needed to build QSP circuits.
We present here an optimization based method that can accurately compute the phase factors using standard double precision arithmetic operations.
arXiv Detail & Related papers (2020-02-26T17:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.