Systematic Literature Review of Automation and Artificial Intelligence in Usability Issue Detection
- URL: http://arxiv.org/abs/2504.01415v1
- Date: Wed, 02 Apr 2025 07:07:32 GMT
- Title: Systematic Literature Review of Automation and Artificial Intelligence in Usability Issue Detection
- Authors: Eduard Kuric, Peter Demcak, Matus Krajcovic, Jan Lang,
- Abstract summary: We offer a comprehensive overview of the current state of the art for automated usability issue detection.<n>We analyze trends, paradigms, and the technical context in which they are applied.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Usability issues can hinder the effective use of software. Therefore, various techniques are deployed to diagnose and mitigate them. However, these techniques are costly and time-consuming, particularly in iterative design and development. A substantial body of research indicates that automation and artificial intelligence can enhance the process of obtaining usability insights. In our systematic review of 155 publications, we offer a comprehensive overview of the current state of the art for automated usability issue detection. We analyze trends, paradigms, and the technical context in which they are applied. Finally, we discuss the implications and potential directions for future research.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Reporting Risks in AI-based Assistive Technology Research: A Systematic Review [2.928964540437144]
We conducted a systematic literature review of research into AI-based assistive technology for persons with visual impairments.
Our study shows that most proposed technologies with a testable prototype have not been evaluated in a human study with members of the sight-loss community.
arXiv Detail & Related papers (2024-07-01T05:22:44Z) - Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review [0.0]
We review the eXplainable AI (XAI) tools and techniques in this context.
We focus on their role in making AI decision-making transparent, particularly in critical scenarios where humans are involved.
We discuss current limitations and potential future research that aims to balance explainability with model performance.
arXiv Detail & Related papers (2024-04-17T17:49:38Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
Black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in remote sensing.
We perform a systematic review to identify the key trends in the field and shed light on novel explainable AI approaches.
We also give a detailed outlook on the challenges and promising research directions.
arXiv Detail & Related papers (2024-02-21T13:19:58Z) - A Systematic Literature Review on Explainability for Machine/Deep Learning-based Software Engineering Research [23.273934717819795]
This paper presents a systematic literature review of approaches that aim to improve the explainability of AI models within the context of Software Engineering.
We aim to summarize the SE tasks where XAI techniques have shown success to date; (2) classify and analyze different XAI techniques; and (3) investigate existing evaluation approaches.
arXiv Detail & Related papers (2024-01-26T03:20:40Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques [3.265458968159693]
The review is based on 220 scientific articles published between January 2019 and March 2024.
The authors adopt a classifying framework to interpret and highlight research similarities and peculiarities.
arXiv Detail & Related papers (2023-09-27T19:22:19Z) - Machine Unlearning: A Survey [56.79152190680552]
A special need has arisen where, due to privacy, usability, and/or the right to be forgotten, information about some specific samples needs to be removed from a model, called machine unlearning.
This emerging technology has drawn significant interest from both academics and industry due to its innovation and practicality.
No study has analyzed this complex topic or compared the feasibility of existing unlearning solutions in different kinds of scenarios.
The survey concludes by highlighting some of the outstanding issues with unlearning techniques, along with some feasible directions for new research opportunities.
arXiv Detail & Related papers (2023-06-06T10:18:36Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - A Critical Review of Inductive Logic Programming Techniques for
Explainable AI [9.028858411921906]
Inductive Logic Programming (ILP) is a subfield of symbolic artificial intelligence.
ILP generates explainable first-order clausal theories from examples and background knowledge.
Existing ILP systems often have a vast solution space, and the induced solutions are very sensitive to noises and disturbances.
arXiv Detail & Related papers (2021-12-31T06:34:32Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.