論文の概要: Is Less Really More? Fake News Detection with Limited Information
- arxiv url: http://arxiv.org/abs/2504.01922v1
- Date: Wed, 02 Apr 2025 17:32:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:17:46.817623
- Title: Is Less Really More? Fake News Detection with Limited Information
- Title(参考訳): あまり多くない? 限定情報によるフェイクニュース検出
- Authors: Zhaoyang Cao, John Nguyen, Reza Zafarani,
- Abstract要約: 偽ニュース検出のためのSLIMシステム選択限定情報というフレームワークを提案する。
SLIMは、限られた情報を活用して、全文を用いて得られた最先端技術に匹敵する偽ニュース検出の性能を達成する。
- 参考スコア(独自算出の注目度): 5.548744345836467
- License:
- Abstract: The threat that online fake news and misinformation pose to democracy, justice, public confidence, and especially to vulnerable populations, has led to a sharp increase in the need for fake news detection and intervention. Whether multi-modal or pure text-based, most fake news detection methods depend on textual analysis of entire articles. However, these fake news detection methods come with certain limitations. For instance, fake news detection methods that rely on full text can be computationally inefficient, demand large amounts of training data to achieve competitive accuracy, and may lack robustness across different datasets. This is because fake news datasets have strong variations in terms of the level and types of information they provide; where some can include large paragraphs of text with images and metadata, others can be a few short sentences. Perhaps if one could only use minimal information to detect fake news, fake news detection methods could become more robust and resilient to the lack of information. We aim to overcome these limitations by detecting fake news using systematically selected, limited information that is both effective and capable of delivering robust, promising performance. We propose a framework called SLIM Systematically-selected Limited Information) for fake news detection. In SLIM, we quantify the amount of information by introducing information-theoretic measures. SLIM leverages limited information to achieve performance in fake news detection comparable to that of state-of-the-art obtained using the full text. Furthermore, by combining various types of limited information, SLIM can perform even better while significantly reducing the quantity of information required for training compared to state-of-the-art language model-based fake news detection techniques.
- Abstract(参考訳): オンラインフェイクニュースと誤報が民主主義、正義、公衆の信頼、特に脆弱な人口に影響を及ぼすという脅威は、フェイクニュースの検出と介入の必要性を急激に高めている。
マルチモーダルであれ、純粋なテキストベースであれ、ほとんどのフェイクニュース検出方法は、記事全体のテキスト分析に依存する。
しかし、これらの偽ニュース検出手法には一定の制限がある。
例えば、フルテキストに依存する偽ニュース検出手法は、計算的に非効率であり、競合する精度を達成するために大量のトレーニングデータを要求し、異なるデータセット間で堅牢性を欠く可能性がある。
これは、フェイクニュースデータセットが、提供する情報の種類やレベルに関して大きなバリエーションを持っているためである。
もし、フェイクニュースを検出するために最小限の情報しか使えなかったら、フェイクニュース検出方法は情報不足に対してより堅牢でレジリエンスになるかもしれない。
この制限を克服するために、体系的に選択された限られた情報を用いて、堅牢で有望なパフォーマンスを実現することで、これらの制限を克服する。
偽ニュース検出のためのSLIMシステム選択限定情報(SLIM Systematically-selected Limited Information)というフレームワークを提案する。
SLIMでは,情報理論の手法を導入して情報量の定量化を行う。
SLIMは、限られた情報を活用して、全文を用いて得られた最先端技術に匹敵する偽ニュース検出の性能を達成する。
さらに,様々な種類の限定情報を組み合わせることで,SLIMは,最先端の言語モデルに基づく偽ニュース検出技術と比較して,トレーニングに必要な情報量を大幅に削減しつつ,さらに優れた処理を行うことができる。
関連論文リスト
- Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - fakenewsbr: A Fake News Detection Platform for Brazilian Portuguese [0.6775616141339018]
本稿ではブラジルポルトガル語における偽ニュースの検出に関する総合的研究について述べる。
本稿では、TF-IDFやWord2Vecといった自然言語処理技術を活用する機械学習ベースのアプローチを提案する。
ユーザフレンドリーなWebプラットフォームである fakenewsbr.com を開発し,ニュース記事の妥当性の検証を容易にする。
論文 参考訳(メタデータ) (2023-09-20T04:10:03Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
フェイクニュース検出を自動化するフレームワークであるMPSC(Multi-Policy Statement Checker)を導入する。
MPSCは、深層学習技術を用いて、文自体とその関連するニュース記事を分析し、それが信頼できるか疑わしいかを予測する。
論文 参考訳(メタデータ) (2022-06-01T21:25:21Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Explainable Tsetlin Machine framework for fake news detection with
credibility score assessment [16.457778420360537]
本稿では,最近導入されたTsetlin Machine (TM) に基づく,新たな解釈可能な偽ニュース検出フレームワークを提案する。
我々は、TMの接続節を用いて、真偽のニューステキストの語彙的および意味的特性をキャプチャする。
評価のために、PolitiFactとGossipCopという2つの公開データセットで実験を行い、TMフレームワークが以前公開されたベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-05-19T13:18:02Z) - User Preference-aware Fake News Detection [61.86175081368782]
既存の偽ニュース検出アルゴリズムは、詐欺信号のニュースコンテンツをマイニングすることに焦点を当てている。
本稿では,共同コンテンツとグラフモデリングにより,ユーザの好みから様々な信号を同時にキャプチャする新しいフレームワークUPFDを提案する。
論文 参考訳(メタデータ) (2021-04-25T21:19:24Z) - Connecting the Dots Between Fact Verification and Fake News Detection [21.564628184287173]
本稿では,事実検証と偽ニュース検出の点を結合する,シンプルで効果的な手法を提案する。
提案手法は,最近の事実検証モデルの成功を活用し,ゼロショットフェイクニュースの検出を可能にする。
論文 参考訳(メタデータ) (2020-10-11T09:28:52Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z) - Weak Supervision for Fake News Detection via Reinforcement Learning [34.448503443582396]
本稿では,弱教師付きフェイクニュース検出フレームワークWeFENDを提案する。
提案するフレームワークは,アノテータ,強化セレクタ,フェイクニュース検出器の3つの主要コンポーネントで構成されている。
WeChatの公式アカウントと関連するユーザレポートを通じて発行された大量のニュース記事に対して,提案したフレームワークを検証した。
論文 参考訳(メタデータ) (2019-12-28T21:20:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。