論文の概要: Distance Estimation to Support Assistive Drones for the Visually Impaired using Robust Calibration
- arxiv url: http://arxiv.org/abs/2504.01988v1
- Date: Mon, 31 Mar 2025 08:56:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:25.608945
- Title: Distance Estimation to Support Assistive Drones for the Visually Impaired using Robust Calibration
- Title(参考訳): ロバスト校正による視覚障害者用補助ドローンの距離推定
- Authors: Suman Raj, Bhavani A Madhabhavi, Madhav Kumar, Prabhav Gupta, Yogesh Simmhan,
- Abstract要約: キャンパス環境における障害物から絶対距離を推定するために深度マップを用いた頑健な校正手法であるNOVAを提案する。
我々はNOVAとSOTA深度マップのアプローチ、および幾何学的および回帰的ベースラインモデルを比較し、VIPや他の障害物への距離推定を行う。
NOVAは、最大5.3-14.6倍のSOTA深度マップ法より明らかに優れている。
- 参考スコア(独自算出の注目度): 4.077787659104315
- License:
- Abstract: Autonomous navigation by drones using onboard sensors, combined with deep learning and computer vision algorithms, is impacting a number of domains. We examine the use of drones to autonomously assist Visually Impaired People (VIPs) in navigating outdoor environments while avoiding obstacles. Here, we present NOVA, a robust calibration technique using depth maps to estimate absolute distances to obstacles in a campus environment. NOVA uses a dynamic-update method that can adapt to adversarial scenarios. We compare NOVA with SOTA depth map approaches, and with geometric and regression-based baseline models, for distance estimation to VIPs and other obstacles in diverse and dynamic conditions. We also provide exhaustive evaluations to validate the robustness and generalizability of our methods. NOVA predicts distances to VIP with an error <30cm and to different obstacles like cars and bicycles with a maximum of 60cm error, which are better than the baselines. NOVA also clearly out-performs SOTA depth map methods, by upto 5.3-14.6x.
- Abstract(参考訳): センサーを搭載したドローンによる自律ナビゲーションと、ディープラーニングとコンピュータビジョンのアルゴリズムが組み合わさって、多くのドメインに影響を与えている。
本研究では,視覚障害者(VIP)を自律的に支援し,障害物を避けながら屋外環境をナビゲートするためのドローンの利用について検討する。
ここでは, キャンパス環境における障害物から絶対距離を推定するために, 深度マップを用いたロバストキャリブレーション手法であるNOVAを提案する。
NOVAは動的更新方式を使用して、敵のシナリオに適応できる。
我々はNOVAとSOTA深度マップのアプローチ,および幾何学的および回帰的ベースラインモデルを比較し,多様な動的条件下でのVIPや他の障害物への距離推定を行う。
また, 本手法の堅牢性と一般化性を評価するために, 徹底的な評価を行った。
NOVAは、誤差が30cm未満でVIPまでの距離を予測し、最大で60cmの誤差で車や自転車などの障害物を検知する。
NOVAはまた、最大5.3-14.6倍のSOTA深度マップ法よりも明らかに優れている。
関連論文リスト
- Long-Range Vision-Based UAV-assisted Localization for Unmanned Surface Vehicles [7.384309568198598]
地球測位システム (GPS) は海洋環境下での無人表面車両 (USV) によるフィールド操作に必須のナビゲーション手法となっている。
GPSは、自然の干渉や悪意のある妨害攻撃に弱いため、必ずしも屋外で利用できるとは限らない。
本研究では,無人航空機(UAV)を用いて,制限された海洋環境下でのUSVのローカライズを支援する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-21T08:37:37Z) - RoadBEV: Road Surface Reconstruction in Bird's Eye View [55.0558717607946]
道路表面の状態、特に幾何学的プロファイルは、自動運転車の走行性能に大きな影響を与え、視覚に基づくオンライン道路再建は、事前に道路情報を確実に捉えている。
Bird's-Eye-View (BEV) の認識は、より信頼性が高く正確な再構築の可能性を秘めている。
本稿では,BEVにおける道路高架化モデルとして,RoadBEV-monoとRoadBEV-stereoの2つのモデルを提案する。
論文 参考訳(メタデータ) (2024-04-09T20:24:29Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
本稿では、ポイントツーポイントナビゲーションタスクにおける飛行偏差に対処する新しい角度ナビゲーションパラダイムを提案する。
また、Adaptive Feature Enhance Module、Cross-knowledge Attention-guided Module、Robust Task-oriented Head Moduleを含むモデルを提案する。
論文 参考訳(メタデータ) (2024-02-04T08:41:20Z) - VAPOR: Legged Robot Navigation in Outdoor Vegetation Using Offline
Reinforcement Learning [53.13393315664145]
本研究では,非構造で密集した屋外環境における自律脚ロボットナビゲーションのための新しい手法であるVAPORを提案する。
本手法は,アクター・クリティカル・ネットワークと実際の屋外植生で収集された任意のデータを用いて,新しいRLポリシーを訓練する。
VAPORの動作は成功率を最大40%向上させ、平均電流消費量を最大2.9%削減し、正規化軌道長を最大11.2%削減する。
論文 参考訳(メタデータ) (2023-09-14T16:21:27Z) - CoverNav: Cover Following Navigation Planning in Unstructured Outdoor
Environment with Deep Reinforcement Learning [1.0499611180329804]
オフロード地形やジャングル環境における隠蔽およびナビゲート可能な軌道を識別するための,Deep Reinforcement Learning に基づく新しいアルゴリズム CoverNav を提案する。
CoverNavは、ロボットエージェントが報酬関数を使って低い標高の地形を学習するのを助ける。
また,カバーナブの最大目標距離12mと,カバーオブジェクトの有無による異なる標高シナリオにおける成功率について検討した。
論文 参考訳(メタデータ) (2023-08-12T15:19:49Z) - UAV Obstacle Avoidance by Human-in-the-Loop Reinforcement in Arbitrary
3D Environment [17.531224704021273]
本稿では, 深部強化学習に基づく無人航空機(UAV)の連続制御に着目した。
本稿では,UAVが飛行中の障害物を自動的に回避できる深層強化学習(DRL)法を提案する。
論文 参考訳(メタデータ) (2023-04-07T01:44:05Z) - AZTR: Aerial Video Action Recognition with Auto Zoom and Temporal
Reasoning [63.628195002143734]
本稿では,空中映像の行動認識のための新しい手法を提案する。
提案手法は,UAVを用いて撮影したビデオに対して設計されており,エッジやモバイルデバイス上でも動作可能である。
我々は、カスタマイズされたオートズームを使用して、人間のターゲットを自動的に識別し、適切にスケールする学習ベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-02T21:24:19Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
視覚的フィードを用いたドローンからドローンへの検知は、ドローンの衝突の検出、ドローンの攻撃の検出、他のドローンとの飛行の調整など、重要な応用がある。
既存の手法は計算コストがかかり、非エンドツーエンドの最適化に追随し、複雑なマルチステージパイプラインを持つため、エッジデバイス上でのリアルタイムデプロイメントには適さない。
計算効率を向上したエンドツーエンドのソリューションを提供する,シンプルで効果的なフレームワークであるitTransVisDroneを提案する。
論文 参考訳(メタデータ) (2022-10-16T03:05:13Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
駆動シナリオにおける自己教師付き単眼深度推定は、教師付きアプローチに匹敵する性能を達成した。
本稿では,自己監督型深度推定フレームワーク上に費用効率の高いレーダデータを利用する新しい手法であるR4Dynを提案する。
論文 参考訳(メタデータ) (2021-08-10T17:57:03Z) - Robust Autonomous Landing of UAV in Non-Cooperative Environments based
on Dynamic Time Camera-LiDAR Fusion [11.407952542799526]
低コストLiDARと双眼カメラを備えたUAVシステムを構築し,非協調環境における自律着陸を実現する。
我々は,LiDARの非繰り返し走査と高いFOVカバレッジ特性を利用して,動的時間深度補完アルゴリズムを考案した。
深度マップに基づいて, 傾斜, 粗度, 安全領域の大きさなどの高層地形情報を導出する。
論文 参考訳(メタデータ) (2020-11-27T14:47:02Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。