Universal efficiency boost in prethermal quantum heat engines
- URL: http://arxiv.org/abs/2504.02044v1
- Date: Wed, 02 Apr 2025 18:04:22 GMT
- Title: Universal efficiency boost in prethermal quantum heat engines
- Authors: Alberto Brollo, Adolfo del Campo, Alvise Bastianello,
- Abstract summary: Heat engines near the adiabatic limit assume a working medium at thermal equilibrium.<n>Conservation laws that hinder thermalization lead to prethermalization in exotic stationary phases.<n>We find that additional conservation laws reduce efficiency at positive temperatures, but enhance it in regimes of negative temperatures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heat engines near the adiabatic limit typically assume a working medium at thermal equilibrium. However, quantum many-body systems often showcase conservation laws that hinder thermalization, leading to prethermalization in exotic stationary phases. This work explores whether prethermalization enhances or reduces engine efficiency. We investigate Otto cycles in quantum systems with varying numbers of conserved quantities. We find that additional conservation laws reduce efficiency at positive temperatures, but enhance it in regimes of negative temperatures. Our findings stem from general thermodynamic inequalities for infinitesimal cycles, and we provide evidence for integrable models undergoing finite cycles using the theoretical framework of Generalized Hydrodynamics. The relevance of our results for quantum simulators is also discussed.
Related papers
- Thermodynamic approach to quantum cooling limit of continuous Gaussian feedback [0.0]
We establish a fundamental bound on quantum feedback cooling in Gaussian systems.<n>In contrast to previously known bounds, the obtained bound can be saturated by experimentally feasible situations.<n>Our theory provides a general framework for understanding the thermodynamic constraints on quantum feedback cooling.
arXiv Detail & Related papers (2025-03-06T10:02:10Z) - Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Many-body quantum heat engines based on free-fermion systems [0.0]
We study the performances of an imperfect quantum many-body Otto engine based on free-fermion systems.
We discuss the emerging optimal working points as functions of the various model parameters.
arXiv Detail & Related papers (2024-03-18T10:41:38Z) - Noncommuting conserved charges in quantum thermodynamics and beyond [39.781091151259766]
How do noncommuting charges affect thermodynamic phenomena?
Charges' noncommutation has been found to invalidate derivations of the thermal state's form.
Evidence suggests that noncommuting charges may hinder thermalization in some ways while enhancing thermalization in others.
arXiv Detail & Related papers (2023-05-31T18:00:00Z) - Thermodynamics and Fluctuations in Quantum Heat Engines under Reservoir
Squeezing [7.109424824240926]
We show that reservoir squeezing significantly enhances the performance by increasing the thermodynamic efficiency and the power.
An experimental scheme for realizing this quantum heat engine is proposed using a single-electron spin pertaining to a trapped 40Ca$+$ ion.
arXiv Detail & Related papers (2022-09-13T11:15:31Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Suppressing coherence effects in quantum-measurement based engines [5.363106329253996]
We propose a universal framework to describe the thermodynamics of a quantum engine fueled by quantum projective measurements.
We show that replacing the standard hot thermal reservoir by a projective measurement operation could improve the performance of the quantum engine.
arXiv Detail & Related papers (2021-08-18T06:51:26Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Quantum thermodynamically consistent local master equations [0.0]
We show that local master equations are consistent with thermodynamics and its laws without resorting to a microscopic model.
We consider a quantum system in contact with multiple baths and identify the relevant contributions to the total energy, heat currents and entropy production rate.
arXiv Detail & Related papers (2020-08-11T14:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.