論文の概要: Geospatial Artificial Intelligence for Satellite-based Flood Extent Mapping: Concepts, Advances, and Future Perspectives
- arxiv url: http://arxiv.org/abs/2504.02214v2
- Date: Tue, 08 Apr 2025 04:59:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 10:05:03.382771
- Title: Geospatial Artificial Intelligence for Satellite-based Flood Extent Mapping: Concepts, Advances, and Future Perspectives
- Title(参考訳): 衛星を用いた洪水断層マッピングのための地理空間人工知能 : 概念・進歩・今後の展望
- Authors: Hyunho Lee, Wenwen Li,
- Abstract要約: 衛星ベースの洪水範囲マッピングのためのGeoAIは、人工知能技術と衛星データを統合し、洪水イベントを特定し、その影響を評価する。
一次出力は、しばしば洪水範囲の地図を含み、影響地域を詳細に表し、不確実性推定や変化検出などの分析出力も含む。
- 参考スコア(独自算出の注目度): 1.842368798362815
- License:
- Abstract: Geospatial Artificial Intelligence (GeoAI) for satellite-based flood extent mapping systematically integrates artificial intelligence techniques with satellite data to identify flood events and assess their impacts, for disaster management and spatial decision-making. The primary output often includes flood extent maps, which delineate the affected areas, along with additional analytical outputs such as uncertainty estimation and change detection.
- Abstract(参考訳): 衛星に基づく洪水範囲マッピングのための地理空間人工知能(GeoAI)は、災害管理と空間意思決定のために、人工知能技術を衛星データと体系的に統合し、洪水イベントを特定し、その影響を評価する。
主なアウトプットには、しばしば洪水範囲の地図が含まれており、影響地域を列挙し、不確実性推定や変化検出といった分析的なアウトプットが加えられている。
関連論文リスト
- Spatiotemporal Air Quality Mapping in Urban Areas Using Sparse Sensor Data, Satellite Imagery, Meteorological Factors, and Spatial Features [11.845097068829551]
本稿では,高時間空気質指標マッピングのためのフレームワークを提案する。
空間的および時間的依存関係に基づいて,非時間的位置におけるAQI値を推定する。
パキスタンのラホールにおけるケーススタディを通じて,我々のアプローチの活用について解説する。
論文 参考訳(メタデータ) (2025-01-20T04:39:13Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
地質図は地質学の基本的な図として、地球の地下と地表の構造と構成に関する重要な洞察を提供する。
その重要性にもかかわらず、現在のマルチモーダル大言語モデル(MLLM)は地質図の理解に乏しいことが多い。
このギャップを定量化するために、地質地図理解においてMLLMを評価するための最初のベンチマークであるGeoMap-Benchを構築した。
論文 参考訳(メタデータ) (2025-01-10T18:59:42Z) - Urban Flood Mapping Using Satellite Synthetic Aperture Radar Data: A Review of Characteristics, Approaches and Datasets [17.621744717937993]
本研究は,SARを用いた都市洪水マッピングの課題と進展に焦点を当てたものである。
SARデータにおける空間分解能と時間分解能の限界に特に対処し、本質的な前処理ステップについて議論する。
これは、都市洪水マッピングのためのオープンアクセスSARデータセットの欠如を強調し、高度なディープラーニングベースの手法の開発を妨げる。
論文 参考訳(メタデータ) (2024-11-06T09:30:13Z) - A Distance Similarity-based Genetic Optimization Algorithm for Satellite Ground Network Planning Considering Feeding Mode [53.71516191515285]
衛星データ中継ミッションの送信効率の低さは、現在システムの構築を制約している問題となっている。
本研究では,タスク間の状態特性を考慮した距離類似性に基づく遺伝的最適化アルゴリズム(DSGA)を提案し,タスク間の類似性を決定するための重み付きユークリッド距離法を提案する。
論文 参考訳(メタデータ) (2024-08-29T06:57:45Z) - Towards Efficient Disaster Response via Cost-effective Unbiased Class Rate Estimation through Neyman Allocation Stratified Sampling Active Learning [11.697034536189094]
本稿では,二分分類のためのランダムサンプリング木を構築する革新的なアルゴリズムを提案する。
その結果,本手法は受動的および従来の能動的学習手法を超越していることが判明した。
従来のアクティブな学習戦略における「サンプルバイアス」の課題に効果的に対処する。
論文 参考訳(メタデータ) (2024-05-28T01:34:35Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Multimodal learning-based inversion models for the space-time
reconstruction of satellite-derived geophysical fields [40.33123267556167]
各種の衛星センサーは、衛星軌道による異なるサンプリングパターンの観測データや、大気環境に対する感度を提供する。
本稿では,エンドツーエンドの学習手法がマルチモーダル・インバージョン問題に対処するための新しい手段を提供する方法について検討する。
本手法は,衛星から得られた海面温度画像から適切な情報を抽出し,衛星高度データからの海面電流の復元をいかに進めるかを示す。
論文 参考訳(メタデータ) (2022-03-20T20:37:03Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
この研究は、AI、その多様なサブフィールド、そして最先端のアルゴリズムの概要を提供する。
さまざまな衛星通信分野へのAIの適用は、ビームホッピング、アンチジャミング、ネットワークトラフィック予測、チャネルモデリング、テレメトリマイニング、電離圏シンチレーション検出、干渉管理、リモートセンシング、行動モデリング、スペースエアグラウンド統合、エネルギー管理など、優れた可能性を実証しています。
論文 参考訳(メタデータ) (2021-01-25T13:01:16Z) - Post-Hurricane Damage Assessment Using Satellite Imagery and Geolocation
Features [0.2538209532048866]
本研究では,被災地の衛星画像と位置情報を活用し,災害後の被害建物を識別する混合データ手法を提案する。
この手法は、2017年のヒューストン大都市圏におけるハリケーン・ハーベイのケーススタディに基づいて、画像のみを用いて同様の作業を行うことで大幅に改善した。
本研究では,画像特徴に付加的な情報を提供するために位置情報機能の創造的な選択を行ったが,ドメイン知識や災害の種類に応じて,イベントの物理的挙動をモデル化するための他の機能を含めることはユーザ次第である。
論文 参考訳(メタデータ) (2020-12-15T21:30:19Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。