論文の概要: Atrial constitutive neural networks
- arxiv url: http://arxiv.org/abs/2504.02748v1
- Date: Thu, 03 Apr 2025 16:35:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 19:35:58.132713
- Title: Atrial constitutive neural networks
- Title(参考訳): 心房構成型ニューラルネットワーク
- Authors: Mathias Peirlinck, Kevin Linka, Ellen Kuhl,
- Abstract要約: 本研究は,ニューラルネットワークを用いた心房組織の力学的挙動を特徴付ける新しい手法を提案する。
健康なヒトの心房の2軸引張試験データに基づいて,最も適切な新素材モデルを自動的に発見する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This work presents a novel approach for characterizing the mechanical behavior of atrial tissue using constitutive neural networks. Based on experimental biaxial tensile test data of healthy human atria, we automatically discover the most appropriate constitutive material model, thereby overcoming the limitations of traditional, pre-defined models. This approach offers a new perspective on modeling atrial mechanics and is a significant step towards improved simulation and prediction of cardiac health.
- Abstract(参考訳): 本研究は, 構成的ニューラルネットワークを用いた心房組織の力学的挙動を特徴付ける新しい手法を提案する。
健康なヒトの心房の2軸引張試験データに基づいて,最も適切な構成物質モデルを自動的に発見し,従来から定義されてきたモデルの限界を克服する。
このアプローチは心房力学をモデリングする新しい視点を提供し、心の健康のシミュレーションと予測を改善するための重要なステップである。
関連論文リスト
- Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
視覚入力から行動出力まで,包括的な視覚的意思決定モデルを実装した。
我々のモデルは人間の行動と密接に一致し、霊長類の神経活動を反映する。
ニューロイメージング・インフォームド・ファインチューニング手法を導入し、モデルに適用し、性能改善を実現した。
論文 参考訳(メタデータ) (2024-09-04T02:38:52Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - HyPer-EP: Meta-Learning Hybrid Personalized Models for Cardiac Electrophysiology [7.230055455268642]
本稿では,個人化された心臓デジタル双生児を記述するための新しいハイブリッド・モデリング・フレームワークを提案する。
そこで我々は,物理系と神経系の両方のコンポーネントを識別するための新しいメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-15T02:30:00Z) - Exploring hyperelastic material model discovery for human brain cortex:
multivariate analysis vs. artificial neural network approaches [10.003764827561238]
本研究の目的は、ヒト脳組織において最も好ましい物質モデルを特定することである。
我々は、広く受け入れられている古典モデルの一般化に、人工ニューラルネットワークと多重回帰法を適用した。
論文 参考訳(メタデータ) (2023-10-16T18:49:59Z) - Few-shot Generation of Personalized Neural Surrogates for Cardiac
Simulation via Bayesian Meta-Learning [6.978382728087236]
メタラーニングの単一コヒーレントフレームワークにおいて、パーソナライズされたニューラルサロゲートを実現するための新しい概念を提案する。
テスト時間として、MetaPNSは個人から利用可能な小さなフレキシブルなデータの高速フィードフォワード埋め込みによって、パーソナライズされたニューラルサロゲートを提供する。
MetaPNSは、従来の最適化心臓シミュレーションモデルと比較して、パーソナライズと予測精度を改善することができた。
論文 参考訳(メタデータ) (2022-10-06T14:59:27Z) - Low-Light Image Restoration Based on Retina Model using Neural Networks [0.0]
提案したニューラルネットワークモデルは、従来の信号処理モデルと対照的に計算オーバーヘッドのコストを削減し、主観的観点から複雑なディープラーニングモデルに匹敵する結果を生成する。
この研究は、ニューラルネットワークを用いて網膜ニューロンの機能を直接シミュレートするために、最適パラメーターを手動で探すことを避けるだけでなく、特定の神経生物学組織のために対応する人工バージョンを構築する方法を構築することも示している。
論文 参考訳(メタデータ) (2022-10-04T08:14:49Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Formalizing Generalization and Robustness of Neural Networks to Weight
Perturbations [58.731070632586594]
非負のモノトーンアクティベーション機能を備えたフィードフォワードニューラルネットワークの重量変動に対する最初の形式解析を提供します。
また,重みの摂動に対して一般化し頑健なニューラルネットワークを訓練するための新しい理論駆動損失関数を設計した。
論文 参考訳(メタデータ) (2021-03-03T06:17:03Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。