Controllable diatomic molecular quantum thermodynamic machines
- URL: http://arxiv.org/abs/2504.03131v1
- Date: Fri, 04 Apr 2025 02:54:43 GMT
- Title: Controllable diatomic molecular quantum thermodynamic machines
- Authors: C. O. Edet, E. P. Inyang, P. O. Amadi, O. Abah, N. Ali,
- Abstract summary: We present quantum heat machines using a diatomic molecule modelled by a $q$-deformed potential as a working medium.<n>We analyze the effect of the deformation parameter and other potential parameters on the work output and efficiency of the quantum Otto and quantum Carnot heat cycles.
- Score: 2.4959493713108065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present quantum heat machines using a diatomic molecule modelled by a $q$-deformed potential as a working medium. We analyze the effect of the deformation parameter and other potential parameters on the work output and efficiency of the quantum Otto and quantum Carnot heat cycles. Furthermore, we derive the analytical expressions of work and efficiency as a function of these parameters. Interestingly, our system reveals different operational phases for the range of parameter regimes considered, such as a quantum heat engine. In addition, the efficiency of the quantum Otto heat engine is seen to be tunable by the deformation parameter. Our findings provide useful insight for understanding the impact of anharmonicity on the design of quantum thermal machines.
Related papers
- Quantum Thermodynamics of a Power-Law Potential [0.0]
We present the results for the Stirling and Otto numerical modeling of quantum thermal machines.<n>We derive expressions for the reduced energy exchanges during a complete cycle and for the efficiency/coefficient of performance.<n>The findings highlight the role of power-like potentials in optimizing quantum heat engines.
arXiv Detail & Related papers (2024-12-24T21:11:38Z) - Exploring the role of criticality in the quantum Otto cycle fueled by the anisotropic quantum Rabi-Stark model [0.0]
Quantum heat machines, encompassing heat engines, refrigerators, heaters, and accelerators, represent the forefront of quantum thermodynamics.
This paper investigates a quantum Otto engine operating in both ideal and finite-time scenarios.
By focusing on quantum heat engines, our study reveals that these phase transitions critically modulate the efficiency and power of AQRSM-based engines.
arXiv Detail & Related papers (2024-07-12T06:36:57Z) - An atom-doped photon engine: Extracting mechanical work from a quantum
system via radiation pressure [0.0]
We introduce a model featuring an atom-doped optical quantum cavity propelling a classical piston through radiation pressure.
We employ the model to construct quantum Otto and Carnot engines, comparing their performance in terms of energetics, work output, efficiency, and power under various conditions.
arXiv Detail & Related papers (2023-11-27T10:57:26Z) - Universal quantum Otto heat machine based on the Dicke model [0.0]
We study a quantum Otto thermal machine where the working substance is composed of N identical qubits coupled to a single mode of a bosonic field.
We show that it is possible to build a universal quantum heat machine (UQHM) that can function as an engine, refrigerator, heater or accelerator.
arXiv Detail & Related papers (2023-08-13T02:27:17Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Efficiency and thermodynamic uncertainty relations of a dynamical
quantum heat engine [0.0]
We show that parameters can be found such that the machine operates both as a quantum engine or refrigerator.
We show that parameters can be found such that the machine operates both as a quantum engine or refrigerator, with both sizeable efficiency and small fluctuations.
arXiv Detail & Related papers (2023-03-28T07:30:34Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.