論文の概要: Enhanced Penalty-based Bidirectional Reinforcement Learning Algorithms
- arxiv url: http://arxiv.org/abs/2504.03163v1
- Date: Fri, 04 Apr 2025 04:43:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:43.397400
- Title: Enhanced Penalty-based Bidirectional Reinforcement Learning Algorithms
- Title(参考訳): 罰則に基づく双方向強化学習アルゴリズムの強化
- Authors: Sai Gana Sandeep Pula, Sathish A. P. Kumar, Sumit Jha, Arvind Ramanathan,
- Abstract要約: エージェントが初期状態と終端状態の両方から学習できる双方向学習手法を提案する。
提案手法は,Maniのスキルベンチマーク環境に対して検証される。
その結果、この統合戦略は、困難なシナリオにおける政策学習、適応性、全体的なパフォーマンスを向上させることが示唆された。
- 参考スコア(独自算出の注目度): 4.197448156583907
- License:
- Abstract: This research focuses on enhancing reinforcement learning (RL) algorithms by integrating penalty functions to guide agents in avoiding unwanted actions while optimizing rewards. The goal is to improve the learning process by ensuring that agents learn not only suitable actions but also which actions to avoid. Additionally, we reintroduce a bidirectional learning approach that enables agents to learn from both initial and terminal states, thereby improving speed and robustness in complex environments. Our proposed Penalty-Based Bidirectional methodology is tested against Mani skill benchmark environments, demonstrating an optimality improvement of success rate of approximately 4% compared to existing RL implementations. The findings indicate that this integrated strategy enhances policy learning, adaptability, and overall performance in challenging scenarios
- Abstract(参考訳): 本研究は,報酬を最適化しながら,不要な行為を避けるための指導エージェントにペナルティ関数を統合することで,強化学習(RL)アルゴリズムの強化に焦点をあてる。
目標は、エージェントが適切なアクションだけでなく、避けるべきアクションも学べるようにすることで、学習プロセスを改善することである。
さらに、エージェントが初期状態と終端状態の両方から学習できる双方向学習アプローチを再導入し、複雑な環境における速度と堅牢性を改善する。
提案手法は,既存のRL実装と比較して,成功率約4%の最適性向上を実証し,Maniスキルベンチマーク環境に対して検証した。
その結果, この統合戦略は, 課題シナリオにおける政策学習, 適応性, 全体的なパフォーマンスを向上させることが示唆された。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach [0.9549646359252346]
勾配に基づく手法を用いて訓練された深層強化学習(RL)モデルでは、勾配の選択とその学習速度は優れた性能を達成するために不可欠である。
本稿では,学習中のエージェントのパフォーマンスに基づいて学習率を選択するメタ学習手法である深層強化学習(LRRL)の動的学習率を提案する。
論文 参考訳(メタデータ) (2024-10-16T14:15:28Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
本稿では,ETOと呼ばれる探索に基づく軌道最適化手法を提案する。
この学習方法はオープンLLMエージェントの性能を向上させるために設計されている。
3つの複雑なタスクに関する実験は、ETOがベースライン性能をはるかに上回っていることを示す。
論文 参考訳(メタデータ) (2024-03-04T21:50:29Z) - Efficient Reinforcement Learning via Decoupling Exploration and Utilization [6.305976803910899]
強化学習(Reinforcement Learning, RL)は、ゲーム、ロボティクス、自動運転車など、さまざまな分野やアプリケーションで大きな成功を収めている。
本研究の目的は,探索と利用を分離して効率よく学習するエージェントを訓練することであり,エージェントが最適解の難解を逃れられるようにすることである。
提案したOPARL(Optimistic and Pessimistic Actor Reinforcement Learning)アルゴリズムに実装した。
論文 参考訳(メタデータ) (2023-12-26T09:03:23Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
強化学習(Reinforcement Learning, RL)は、教師付き学習とは本質的に異なり、実際、これらの学習は単純なRLタスクでもうまく機能しない。
エージェント勾配分布は非独立で同一分布であり、非効率なメタトレーニングをもたらす。
おもちゃのタスクでしか訓練されていないが、我々の学習はブラックスの目に見えない複雑なタスクを一般化できることを示した。
論文 参考訳(メタデータ) (2023-02-03T00:11:02Z) - Enforcing the consensus between Trajectory Optimization and Policy
Learning for precise robot control [75.28441662678394]
強化学習(RL)と軌道最適化(TO)は強い相補的優位性を示す。
グローバルコントロールポリシを迅速に学習する上で,これらのアプローチに対して,いくつかの改良が提案されている。
論文 参考訳(メタデータ) (2022-09-19T13:32:09Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
テストタイムでの計画(IMPLANT)は、模倣学習のための新しいメタアルゴリズムである。
IMPLANTは,標準制御環境において,ベンチマーク模倣学習手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-07T17:16:52Z) - Evolutionary Action Selection for Gradient-based Policy Learning [6.282299638495976]
進化的アルゴリズム(EA)とDeep Reinforcement Learning(DRL)が最近組み合わされ、より優れたポリシー学習のための2つのソリューションの利点が統合された。
本稿では、EAとDRLの新たな組み合わせである進化的行動選択遅延Deep Deterministic Policy Gradient (EAS-TD3)を提案する。
論文 参考訳(メタデータ) (2022-01-12T03:31:21Z) - Controlled Deep Reinforcement Learning for Optimized Slice Placement [0.8459686722437155]
我々は、"Heuristally Assisted Deep Reinforcement Learning (HA-DRL)"と呼ばれるハイブリッドML-ヒューリスティックアプローチを提案する。
提案手法は,最近のDeep Reinforcement Learning (DRL) によるスライス配置と仮想ネットワーク埋め込み (VNE) に活用されている。
評価結果から,提案したHA-DRLアルゴリズムは,効率的なスライス配置ポリシーの学習を高速化できることが示された。
論文 参考訳(メタデータ) (2021-08-03T14:54:00Z) - Self-Imitation Advantage Learning [43.8107780378031]
自己模倣学習は、期待以上のリターンのアクションを奨励する強化学習方法です。
本稿では,ベルマン最適性演算子を改変したオフポリシーRLの自己模倣学習の新たな一般化を提案する。
論文 参考訳(メタデータ) (2020-12-22T13:21:50Z) - Robust Reinforcement Learning via Adversarial training with Langevin
Dynamics [51.234482917047835]
本稿では,頑健な強化学習(RL)エージェントを訓練する難しい課題に取り組むために,サンプリング視点を導入する。
本稿では,2人プレイヤポリシー手法のサンプリング版である,スケーラブルな2人プレイヤRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-14T14:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。