Efficient Dynamic Clustering-Based Document Compression for Retrieval-Augmented-Generation
- URL: http://arxiv.org/abs/2504.03165v2
- Date: Mon, 04 Aug 2025 15:10:59 GMT
- Title: Efficient Dynamic Clustering-Based Document Compression for Retrieval-Augmented-Generation
- Authors: Weitao Li, Kaiming Liu, Xiangyu Zhang, Xuanyu Lei, Weizhi Ma, Yang Liu,
- Abstract summary: Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge injection during large language model (LLM) inference in recent years.<n>Due to their limited ability to exploit fine-grained inter-document relationships, current RAG implementations face challenges in effectively addressing the retrieved noise and redundancy content.<n>We propose an Efficient Dynamic Clustering-based document Compression framework (EDC2-RAG) that utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content.
- Score: 16.6539993941399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) has emerged as a widely adopted approach for knowledge injection during large language model (LLM) inference in recent years. However, due to their limited ability to exploit fine-grained inter-document relationships, current RAG implementations face challenges in effectively addressing the retrieved noise and redundancy content, which may cause error in the generation results. To address these limitations, we propose an Efficient Dynamic Clustering-based document Compression framework (EDC2-RAG) that utilizes latent inter-document relationships while simultaneously removing irrelevant information and redundant content. We validate our approach, built upon GPT-3.5-Turbo and GPT-4o-mini, on widely used knowledge-QA and Hallucination-Detection datasets. Experimental results show that our method achieves consistent performance improvements across various scenarios and experimental settings, demonstrating strong robustness and applicability. Our code and datasets are available at https://github.com/Tsinghua-dhy/EDC-2-RAG.
Related papers
- Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG) enables large language models to access broader knowledge sources.<n>We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance.<n>We present KARE-RAG, which improves knowledge utilization through three key innovations.
arXiv Detail & Related papers (2025-06-03T06:31:17Z) - Automatically Identify and Rectify: Robust Deep Contrastive Multi-view Clustering in Noisy Scenarios [76.02688769599686]
We propose a novel multi-view clustering framework for the automatic identification and rectification of noisy data, termed AIRMVC.<n>Specifically, we reformulate noisy identification as an anomaly identification problem using GMM.<n>We then design a hybrid rectification strategy to mitigate the adverse effects of noisy data based on the identification results.
arXiv Detail & Related papers (2025-05-27T16:16:54Z) - Accelerating Adaptive Retrieval Augmented Generation via Instruction-Driven Representation Reduction of Retrieval Overlaps [16.84310001807895]
This paper introduces a model-agnostic approach that can be applied to A-RAG methods.<n>Specifically, we use cache access and parallel generation to speed up the prefilling and decoding stages respectively.
arXiv Detail & Related papers (2025-05-19T05:39:38Z) - Context-Guided Dynamic Retrieval for Improving Generation Quality in RAG Models [2.9687381456164004]
It proposes a state-aware dynamic knowledge retrieval mechanism to enhance semantic understanding and knowledge scheduling efficiency.
The proposed structure is thoroughly evaluated across different large models, including GPT-4, GPT-4o, and DeepSeek.
The approach also demonstrates stronger robustness and generation consistency in tasks involving semantic ambiguity and multi-document fusion.
arXiv Detail & Related papers (2025-04-28T02:50:45Z) - RAPID: Efficient Retrieval-Augmented Long Text Generation with Writing Planning and Information Discovery [69.41989381702858]
Existing methods, such as direct generation and multi-agent discussion, often struggle with issues like hallucinations, topic incoherence, and significant latency.<n>We propose RAPID, an efficient retrieval-augmented long text generation framework.<n>Our work provides a robust and efficient solution to the challenges of automated long-text generation.
arXiv Detail & Related papers (2025-03-02T06:11:29Z) - TrustRAG: An Information Assistant with Retrieval Augmented Generation [73.84864898280719]
TrustRAG is a novel framework that enhances acRAG from three perspectives: indexing, retrieval, and generation.<n>We open-source the TrustRAG framework and provide a demonstration studio designed for excerpt-based question answering tasks.
arXiv Detail & Related papers (2025-02-19T13:45:27Z) - GeAR: Generation Augmented Retrieval [82.20696567697016]
Document retrieval techniques form the foundation for the development of large-scale information systems.<n>The prevailing methodology is to construct a bi-encoder and compute the semantic similarity.<n>We propose a new method called $textbfGe$neration that incorporates well-designed fusion and decoding modules.
arXiv Detail & Related papers (2025-01-06T05:29:00Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
Retrieval-augmented generation (RAG) has gained traction as a powerful approach for enhancing language models by integrating external knowledge sources.<n>This paper proposes an alternative paradigm, cache-augmented generation (CAG) that bypasses real-time retrieval.
arXiv Detail & Related papers (2024-12-20T06:58:32Z) - RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation [21.764973680014368]
RetroLLM is a unified framework that integrates retrieval and generation into a single, cohesive process.<n>To mitigate false pruning in the process of constrained evidence generation, we introduce hierarchical FM-Index constraints.<n>Experiments on five open-domain QA datasets demonstrate RetroLLM's superior performance across both in-domain and out-of-domain tasks.
arXiv Detail & Related papers (2024-12-16T16:03:25Z) - Adapting to Non-Stationary Environments: Multi-Armed Bandit Enhanced Retrieval-Augmented Generation on Knowledge Graphs [23.357843519762483]
Recent studies have demonstrated that leveraging the Retrieval-Augmented Generation framework, combined with Knowledge Graphs, robustly enhances the reasoning capabilities of Large language models.<n>We introduce a Multi-objective Multi-Armed Bandit enhanced RAG framework, supported by multiple retrieval methods with diverse capabilities.<n>Our method significantly outperforms baseline methods in non-stationary settings while achieving state-of-the-art performance in stationary environments.
arXiv Detail & Related papers (2024-12-10T15:56:03Z) - FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation [1.3824176915623292]
This paper introduces textitFederated Retrieval-Augmented Generation (FRAG), a novel database management paradigm tailored for the growing needs of retrieval-augmented generation (RAG) systems.
FRAG enables mutually-distrusted parties to collaboratively perform Approximate $k$-Nearest Neighbor (ANN) searches on encrypted query vectors and encrypted data stored in distributed vector databases.
arXiv Detail & Related papers (2024-10-17T06:57:29Z) - Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation [73.9145653659403]
We show that Generative Error Correction models struggle to generalize beyond the specific types of errors encountered during training.
We propose DARAG, a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios.
Our approach is simple, scalable, and both domain- and language-agnostic.
arXiv Detail & Related papers (2024-10-17T04:00:29Z) - CART: A Generative Cross-Modal Retrieval Framework with Coarse-To-Fine Semantic Modeling [53.97609687516371]
Cross-modal retrieval aims to search for instances, which are semantically related to the query through the interaction of different modal data.<n>Traditional solutions utilize a single-tower or dual-tower framework to explicitly compute the score between queries and candidates.<n>We propose a generative cross-modal retrieval framework (CART) based on coarse-to-fine semantic modeling.
arXiv Detail & Related papers (2024-06-25T12:47:04Z) - xRAG: Extreme Context Compression for Retrieval-augmented Generation with One Token [108.7069350303884]
xRAG is an innovative context compression method tailored for retrieval-augmented generation.<n>xRAG seamlessly integrates document embeddings into the language model representation space.<n> Experimental results demonstrate that xRAG achieves an average improvement of over 10% across six knowledge-intensive tasks.
arXiv Detail & Related papers (2024-05-22T16:15:17Z) - Grounding Language Model with Chunking-Free In-Context Retrieval [27.316315081648572]
This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems.
arXiv Detail & Related papers (2024-02-15T07:22:04Z) - Exploring the Practicality of Generative Retrieval on Dynamic Corpora [41.223804434693875]
In this paper, we focus on Generative Retrievals (GR), which apply autoregressive language models to IR problems.
Our results on the StreamingQA benchmark demonstrate that GR is more adaptable to evolving knowledge (4-11%), robust in learning knowledge with temporal information, and efficient in terms of FLOPs (x6), indexing time (x6), and storage footprint (x4)
Our paper highlights the potential of GR for future use in practical IR systems within dynamic environments.
arXiv Detail & Related papers (2023-05-27T16:05:00Z) - Multi-grained Hypergraph Interest Modeling for Conversational
Recommendation [75.65483522949857]
We propose a novel multi-grained hypergraph interest modeling approach to capture user interest beneath intricate historical data.
In our approach, we first employ the hypergraph structure to model users' historical dialogue sessions and form a session-based hypergraph, which captures coarse-grained, session-level relations.
We further conduct multi-grained hypergraph convolution on the two kinds of hypergraphs, and utilize the enhanced representations to develop interest-aware CRS.
arXiv Detail & Related papers (2023-05-04T13:13:44Z) - Augmenting Document Representations for Dense Retrieval with
Interpolation and Perturbation [49.940525611640346]
Document Augmentation for dense Retrieval (DAR) framework augments the representations of documents with their Dense Augmentation and perturbations.
We validate the performance of DAR on retrieval tasks with two benchmark datasets, showing that the proposed DAR significantly outperforms relevant baselines on the dense retrieval of both the labeled and unlabeled documents.
arXiv Detail & Related papers (2022-03-15T09:07:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.