論文の概要: Mathematical Modeling of Option Pricing with an Extended Black-Scholes Framework
- arxiv url: http://arxiv.org/abs/2504.03175v1
- Date: Fri, 04 Apr 2025 05:06:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:46:57.990819
- Title: Mathematical Modeling of Option Pricing with an Extended Black-Scholes Framework
- Title(参考訳): 拡張ブラックスクールフレームワークによるオプション価格の数学的モデル化
- Authors: Nikhil Shivakumar Nayak, Michael P. Brenner,
- Abstract要約: 本研究では,ブラック・スコールズモデルを拡張し,ボラティリティと金利変動性を含むオプション価格の高騰について検討した。
拡張されたBlack-Scholesモデルと機械学習ベースのLSTMモデルを開発し、Googleストックオプションの価格で評価する。
- 参考スコア(独自算出の注目度): 2.493245059521523
- License:
- Abstract: This study investigates enhancing option pricing by extending the Black-Scholes model to include stochastic volatility and interest rate variability within the Partial Differential Equation (PDE). The PDE is solved using the finite difference method. The extended Black-Scholes model and a machine learning-based LSTM model are developed and evaluated for pricing Google stock options. Both models were backtested using historical market data. While the LSTM model exhibited higher predictive accuracy, the finite difference method demonstrated superior computational efficiency. This work provides insights into model performance under varying market conditions and emphasizes the potential of hybrid approaches for robust financial modeling.
- Abstract(参考訳): 本研究では,部分微分方程式(PDE)内での確率的ボラティリティと利率変動性を含むように,ブラック・スコールズモデルを拡張してオプション価格を向上することを検討した。
有限差分法を用いてPDEを解く。
拡張されたBlack-Scholesモデルと機械学習ベースのLSTMモデルを開発し、Googleストックオプションの価格で評価する。
どちらのモデルも過去の市場データを使ってバックテストされた。
LSTMモデルは高い予測精度を示したが、有限差分法はより優れた計算効率を示した。
この研究は、様々な市場条件下でのモデルパフォーマンスに関する洞察を提供し、ロバストな金融モデリングのためのハイブリッドアプローチの可能性を強調する。
関連論文リスト
- The AI Black-Scholes: Finance-Informed Neural Network [11.339331636751329]
オプションの価格設定では、既存のモデルは原則駆動の手法とデータ駆動のアプローチに分類される。
対照的に、データ駆動モデルは市場データのトレンドを捉えるのに優れています。
本研究は、原理的手法とデータ駆動手法の両方の長所を統合することによって、これらの制限に対処するハイブリッドアプローチを提案する。
論文 参考訳(メタデータ) (2024-12-15T22:40:40Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Black-Box Tuning of Vision-Language Models with Effective Gradient
Approximation [71.21346469382821]
ブラックボックスモデルに対するテキストプロンプト最適化と出力特徴適応のための協調ブラックボックスチューニング(CBBT)を導入する。
CBBTは11のダウンストリームベンチマークで広範囲に評価され、既存のブラックボックスVL適応法と比較して顕著に改善されている。
論文 参考訳(メタデータ) (2023-12-26T06:31:28Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
ダイナスタイルのモデルベース強化学習には、ポリシー学習と実環境探索のためのサンプルを生成するモデルロールアウトという2つのフェーズが含まれる。
$textttCOPlanner$は、不正確な学習された動的モデル問題に対処するモデルベースのメソッドのための計画駆動フレームワークである。
論文 参考訳(メタデータ) (2023-10-11T06:10:07Z) - Estimating risks of option books using neural-SDE market models [6.319314191226118]
我々は、仲裁自由なニューラル-SDE市場モデルを用いて、単一基盤上の複数のヨーロッパオプションのジョイントダイナミクスの現実的なシナリオを生成する。
提案モデルでは,オプションポートフォリオのバリュー・アット・リスク(VaR)を評価する上で,計算効率が高く,精度も高く,カバー性能も向上し,従来のフィルタによるシミュレーション手法よりもプロサイクル性も低いことを示す。
論文 参考訳(メタデータ) (2022-02-15T02:39:42Z) - Arbitrage-free neural-SDE market models [6.145654286950278]
我々は、基礎となる金融制約を尊重する欧州オプションブックの非パラメトリックモデルを開発する。
株価とオプション価格の離散時系列データからモデルを学習する推論問題について検討する。
我々は,SDEシステムのドリフトと拡散のための関数近似器としてニューラルネットワークを用いる。
論文 参考訳(メタデータ) (2021-05-24T00:53:10Z) - Design of Dynamic Experiments for Black-Box Model Discrimination [72.2414939419588]
選択したいような動的モデル判別の設定を考えてみましょう。 (i) 最高のメカニスティックな時間変化モデルと (ii) 最高のモデルパラメータ推定値です。
勾配情報にアクセス可能な競合する力学モデルに対しては、既存の手法を拡張し、より広い範囲の問題の不確実性を組み込む。
これらのブラックボックスモデルをガウス過程サロゲートモデルに置き換えることで、モデル識別設定を拡張して、競合するブラックボックスモデルをさらに取り入れる。
論文 参考訳(メタデータ) (2021-02-07T11:34:39Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Robust pricing and hedging via neural SDEs [0.0]
我々は,ニューラルSDEの効率的な利用に必要な新しいアルゴリズムを開発し,分析する。
我々は、関連する市場データを取り入れつつ、デリバティブの価格とそれに対応するヘッジ戦略の堅牢な境界を見出した。
ニューラルSDEはリスクニュートラルと現実世界の両方で一貫したキャリブレーションを可能にする。
論文 参考訳(メタデータ) (2020-07-08T14:33:17Z) - Hedging and machine learning driven crude oil data analysis using a
refined Barndorff-Nielsen and Shephard model [0.38073142980732994]
本稿では,バーンドルフ・ニールセン・アンド・シェパード(BN-S)モデルを実装し,商品市場に最適なヘッジ戦略を提案する。
この改良により、経験的データセットから決定論的パラメータを抽出する。
洗練されたモデルにおけるこのパラメータの実装により、結果として得られるモデルは古典的なBN-Sモデルよりもはるかに良く機能する。
論文 参考訳(メタデータ) (2020-04-29T15:45:58Z) - Learnable Bernoulli Dropout for Bayesian Deep Learning [53.79615543862426]
Learnable Bernoulli Dropout (LBD) は、他のモデルパラメータと共に最適化されたパラメータとしてドロップアウト率を考慮する新しいモデルに依存しないドロップアウトスキームである。
LBDは画像分類とセマンティックセグメンテーションにおける精度と不確実性の推定を改善する。
論文 参考訳(メタデータ) (2020-02-12T18:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。