論文の概要: Malware Detection in Docker Containers: An Image is Worth a Thousand Logs
- arxiv url: http://arxiv.org/abs/2504.03238v1
- Date: Fri, 04 Apr 2025 07:38:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:49:51.261885
- Title: Malware Detection in Docker Containers: An Image is Worth a Thousand Logs
- Title(参考訳): Dockerコンテナのマルウェア検出:イメージは数千ログに価値がある
- Authors: Akis Nousias, Efklidis Katsaros, Evangelos Syrmos, Panagiotis Radoglou-Grammatikis, Thomas Lagkas, Vasileios Argyriou, Ioannis Moscholios, Evangelos Markakis, Sotirios Goudos, Panagiotis Sarigiannidis,
- Abstract要約: 本稿では,ファイルシステムの機械学習解析により,漏洩したコンテナを識別する手法を提案する。
ソフトウェアコンテナ全体をタールボール表現を通じて大きなRGBイメージにキャストし、既存の畳み込みニューラルネットワークアーキテクチャをストリーミングでパッチベースの方法で使用することを提案する。
提案手法は,ウイルスTotalエンジンの個別およびアンサンブルよりも高いF1とリコールスコアを達成し,その有効性を実証し,マルウェアにコンパイルされたソフトウェアコンテナを識別するための新しい標準を設定する。
- 参考スコア(独自算出の注目度): 10.132362061193954
- License:
- Abstract: Malware detection is increasingly challenged by evolving techniques like obfuscation and polymorphism, limiting the effectiveness of traditional methods. Meanwhile, the widespread adoption of software containers has introduced new security challenges, including the growing threat of malicious software injection, where a container, once compromised, can serve as entry point for further cyberattacks. In this work, we address these security issues by introducing a method to identify compromised containers through machine learning analysis of their file systems. We cast the entire software containers into large RGB images via their tarball representations, and propose to use established Convolutional Neural Network architectures on a streaming, patch-based manner. To support our experiments, we release the COSOCO dataset--the first of its kind--containing 3364 large-scale RGB images of benign and compromised software containers at https://huggingface.co/datasets/k3ylabs/cosoco-image-dataset. Our method detects more malware and achieves higher F1 and Recall scores than all individual and ensembles of VirusTotal engines, demonstrating its effectiveness and setting a new standard for identifying malware-compromised software containers.
- Abstract(参考訳): マルウェアの検出は、難読化や多型化といった技術の進化によってますます困難になり、従来の方法の有効性が制限される。
一方、ソフトウェアコンテナの普及により、悪意のあるソフトウェアインジェクションの脅威が増大するなど、新たなセキュリティ課題が導入されている。
本研究では,これらのセキュリティ問題に対して,ファイルシステムの機械学習解析を通じて,漏洩したコンテナを識別する手法を導入することで対処する。
ソフトウェアコンテナ全体をタールボール表現を通じて大きなRGBイメージにキャストし、既存の畳み込みニューラルネットワークアーキテクチャをストリーミングでパッチベースの方法で使用することを提案する。
実験を支援するため、COSOCOデータセットをリリースした。このデータセットは3364個の大規模なRGBイメージを含むソフトウェアコンテナで、https://huggingface.co/datasets/k3ylabs/cosoco-image-dataset.comで公開されている。
提案手法は,ウイルスTotalエンジンの個別およびアンサンブルよりも高いF1とリコールスコアを達成し,その有効性を実証し,マルウェアにコンパイルされたソフトウェアコンテナを識別するための新しい標準を設定する。
関連論文リスト
- Relation-aware based Siamese Denoising Autoencoder for Malware Few-shot Classification [6.7203034724385935]
マルウェアが目に見えないゼロデイエクスプロイトを採用した場合、従来のセキュリティ対策では検出できない可能性がある。
既存の機械学習手法は、特定の時代遅れのマルウェアサンプルに基づいて訓練されており、新しいマルウェアの機能に適応するのに苦労する可能性がある。
そこで我々は,より正確な類似性確率を計算するために,関係認識型埋め込みを用いた新しいシームズニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2024-11-21T11:29:10Z) - A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion [2.3039261241391586]
本研究では,マルウェアのバイナリファイルをグレースケールのイメージに変換するためにminhashアルゴリズムを用いる。
この研究は、IDA Proを用いてオペコードシーケンスをデコンパイルし、抽出し、特徴ベクトル化にN-gramとtf-idfアルゴリズムを適用した。
CNN-BiLSTM融合モデルは、画像の特徴とオプコードシーケンスを同時に処理し、分類性能を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-10-12T07:10:44Z) - MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Cryptersは、ターゲットバイナリを変換することで、アンチウイルス(AV)アプリケーションからの検出を回避できるソフトウェアの一部です。
シークレット・アズ・ア・サービスモデルは,検出機構の高度化に対応して人気を博している。
本論文は,シークレット・アズ・ア・サービスに特化したオンライン地下市場に関する最初の研究である。
論文 参考訳(メタデータ) (2024-05-20T08:35:39Z) - Safe and Robust Watermark Injection with a Single OoD Image [90.71804273115585]
高性能なディープニューラルネットワークをトレーニングするには、大量のデータと計算リソースが必要である。
安全で堅牢なバックドア型透かし注入法を提案する。
我々は,透かし注入時のモデルパラメータのランダムな摂動を誘導し,一般的な透かし除去攻撃に対する防御を行う。
論文 参考訳(メタデータ) (2023-09-04T19:58:35Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Sequential Embedding-based Attentive (SEA) classifier for malware
classification [1.290382979353427]
我々は、最先端自然言語処理(NLP)技術を用いたマルウェア検出のソリューションを考案した。
提案モデルでは,それぞれ99.13パーセント,0.04パーセントの精度とログ損失スコアをベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2023-02-11T15:48:16Z) - Design of secure and robust cognitive system for malware detection [0.571097144710995]
インプットサンプルに摂動をインテリジェントに作り、付加することで、敵対するサンプルが生成される。
この論文の目的は、重要なシステムのセキュリティ問題に対処することである。
ステルス性マルウェアを検出する新しい手法が提案されている。
論文 参考訳(メタデータ) (2022-08-03T18:52:38Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Data Augmentation Based Malware Detection using Convolutional Neural
Networks [0.0]
サイバー攻撃は、サイバー世界におけるマルウェアの増加によって広く見られた。
この種のマルウェアの最も重要な特徴は、あるコンピュータから別のコンピュータへ伝播する際に形を変えることである。
本稿では, 画像拡張強化深部畳み込みニューラルネットワークモデルを用いて, 変成マルウェア環境におけるマルウェア群の検出を実現することを目的とする。
論文 参考訳(メタデータ) (2020-10-05T08:58:07Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。