論文の概要: Detecting underdetermination in parameterized quantum circuits
- arxiv url: http://arxiv.org/abs/2504.03315v1
- Date: Fri, 04 Apr 2025 09:50:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:48:59.881492
- Title: Detecting underdetermination in parameterized quantum circuits
- Title(参考訳): パラメタライズド量子回路における過小判定検出
- Authors: Marie Kempkes, Jakob Spiegelberg, Evert van Nieuwenburg, Vedran Dunjko,
- Abstract要約: 機械学習における中心的な疑問は、トレーニングされたモデルの予測がどれほど信頼性が高いかである。
下決定問題は下決定問題と呼ばれ、それを検出する方法を開発することが重要である。
量子機械学習(QML)がある種の学習問題に対する古典的な方法の代替として出現するにつれ、その問題は、どの程度過小評価されるかという問題が発生する。
- 参考スコア(独自算出の注目度): 1.1999555634662633
- License:
- Abstract: A central question in machine learning is how reliable the predictions of a trained model are. Reliability includes the identification of instances for which a model is likely not to be trusted based on an analysis of the learning system itself. Such unreliability for an input may arise from the model family providing a variety of hypotheses consistent with the training data, which can vastly disagree in their predictions on that particular input point. This is called the underdetermination problem, and it is important to develop methods to detect it. With the emergence of quantum machine learning (QML) as a prospective alternative to classical methods for certain learning problems, the question arises to what extent they are subject to underdetermination and whether similar techniques as those developed for classical models can be employed for its detection. In this work, we first provide an overview of concepts from Safe AI and reliability, which in particular received little attention in QML. We then explore the use of a method based on local second-order information for the detection of underdetermination in parameterized quantum circuits through numerical experiments. We further demonstrate that the approach is robust to certain levels of shot noise. Our work contributes to the body of literature on Safe Quantum AI, which is an emerging field of growing importance.
- Abstract(参考訳): 機械学習における中心的な疑問は、トレーニングされたモデルの予測がどれほど信頼性が高いかである。
信頼性には、学習システム自体の分析に基づいて、モデルが信頼できない可能性のあるインスタンスを特定することが含まれる。
このような入力の不確実性は、トレーニングデータと整合した様々な仮説を提供するモデルファミリーから生じ、その特定の入力点に関する予測に大きく矛盾する可能性がある。
これを下決定問題と呼び、それを検出する方法を開発することが重要である。
量子機械学習(QML)がある種の学習問題に対する古典的手法の先駆的代替手段として出現すると、この疑問は、それがどの程度過小評価の対象であるか、また、古典的モデルで開発されたものと類似した手法が検出に利用できるかどうかに起因する。
本稿では,特にQMLではあまり注目されなかったセーフAIと信頼性の概念の概要について概説する。
次に,パラメータ化量子回路における過小判定検出のための局所的な2次情報に基づく手法を数値実験により検討する。
さらに、特定のショットノイズレベルに対して、このアプローチが堅牢であることを示す。
私たちの研究はSafe Quantum AIに関する文献に貢献しています。
関連論文リスト
- Machine learning meets the CHSH scenario [0.0]
機械学習(ML)アプローチの有用性と有効性を評価することに注力する。
我々は、単純なデータサイエンスモデルから高密度ニューラルネットワークまで、幅広いアプローチを検討します。
我々は、平均して良いパフォーマンスを達成することは比較的容易であるが、"ハード"ケースでうまく機能するモデルを訓練することは困難である、と結論付けている。
論文 参考訳(メタデータ) (2024-07-19T15:16:31Z) - A Rate-Distortion View of Uncertainty Quantification [36.85921945174863]
教師付き学習では、入力がトレーニングデータに近接していることを理解することは、モデルが信頼できる予測に達する十分な証拠を持っているかどうかを判断するのに役立つ。
本稿では,この特性でディープニューラルネットワークを強化するための新しい手法であるDistance Aware Bottleneck (DAB)を紹介する。
論文 参考訳(メタデータ) (2024-06-16T01:33:22Z) - Learning-Based Approaches to Predictive Monitoring with Conformal
Statistical Guarantees [2.1684857243537334]
本チュートリアルは、予測モニタリング(PM)のための効率的な手法に焦点を当てている。
PMは、システムの現在の状態から与えられた要件の将来の違反を検出する問題である。
CPSの予測モニタリングに対する我々のアプローチを要約した、汎用的で包括的なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-04T15:16:42Z) - Uncertainty-aware Language Modeling for Selective Question Answering [107.47864420630923]
本稿では,不確実性を考慮したLLMを生成するLLM変換手法を提案する。
我々のアプローチはモデルとデータに依存しず、計算効率が高く、外部モデルやシステムに依存しない。
論文 参考訳(メタデータ) (2023-11-26T22:47:54Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
本稿では,ニューラル状態空間モデルを用いたシステム同定のための不確実性定量化に関する予備的結果を示す。
ベイズ確率的設定で学習問題をフレーム化し、ニューラルネットワークの重みと出力の後方分布を求める。
後部に基づいて,出力の信頼区間を構築し,潜在的に危険なアウト・オブ・ディストリビューション体制下でモデルの使用を効果的に診断できるサプライズ指標を定義する。
論文 参考訳(メタデータ) (2023-04-13T08:57:33Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Robust Deep Learning for Autonomous Driving [0.0]
モデル信頼度を確実に推定する新しい基準を導入する:真のクラス確率(TCP)
真のクラスは本質的にテスト時に未知であるため、補助モデルを用いてデータからTCPの基準を学習し、この文脈に適応した特定の学習スキームを導入することを提案する。
本研究は, 既知モデルに基づく新たな不確実性尺度を導入することで, 誤分類と分布外サンプルを共同で検出する課題に対処する。
論文 参考訳(メタデータ) (2022-11-14T22:07:11Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。