The AI Cosmologist I: An Agentic System for Automated Data Analysis
- URL: http://arxiv.org/abs/2504.03424v1
- Date: Fri, 04 Apr 2025 13:12:08 GMT
- Title: The AI Cosmologist I: An Agentic System for Automated Data Analysis
- Authors: Adam Moss,
- Abstract summary: The AI Cosmologist implements a complete pipeline from idea generation to experimental evaluation and research dissemination.<n>Unlike traditional auto machine-learning systems, the AI Cosmologist generates diverse implementation strategies.<n>Results indicate that agentic systems can automate portions of the research process, potentially accelerating scientific discovery.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the AI Cosmologist, an agentic system designed to automate cosmological/astronomical data analysis and machine learning research workflows. This implements a complete pipeline from idea generation to experimental evaluation and research dissemination, mimicking the scientific process typically performed by human researchers. The system employs specialized agents for planning, coding, execution, analysis, and synthesis that work together to develop novel approaches. Unlike traditional auto machine-learning systems, the AI Cosmologist generates diverse implementation strategies, writes complete code, handles execution errors, analyzes results, and synthesizes new approaches based on experimental outcomes. We demonstrate the AI Cosmologist capabilities across several machine learning tasks, showing how it can successfully explore solution spaces, iterate based on experimental results, and combine successful elements from different approaches. Our results indicate that agentic systems can automate portions of the research process, potentially accelerating scientific discovery. The code and experimental data used in this paper are available on GitHub at https://github.com/adammoss/aicosmologist. Example papers included in the appendix demonstrate the system's capability to autonomously produce complete scientific publications, starting from only the dataset and task description
Related papers
- Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.<n>AGS aims to significantly reduce the time and resources needed for scientific discovery.<n>As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - CodeScientist: End-to-End Semi-Automated Scientific Discovery with Code-based Experimentation [48.12054700748627]
We introduce CodeScientist, a novel ASD system that frames ideation and experiment construction as a form of genetic search jointly.
We use this paradigm to conduct hundreds of automated experiments on machine-generated ideas broadly in the domain of agents and virtual environments.
arXiv Detail & Related papers (2025-03-20T22:37:17Z) - AIGS: Generating Science from AI-Powered Automated Falsification [17.50867181053229]
We propose Baby-AIGS as a baby-step demonstration of a full-process AIGS system, which is a multi-agent system with agents in roles representing key research process.
Experiments on three tasks preliminarily show that Baby-AIGS could produce meaningful scientific discoveries, though not on par with experienced human researchers.
arXiv Detail & Related papers (2024-11-17T13:40:35Z) - MatPilot: an LLM-enabled AI Materials Scientist under the Framework of Human-Machine Collaboration [13.689620109856783]
We developed an AI materials scientist named MatPilot, which has shown encouraging abilities in the discovery of new materials.
The core strength of MatPilot is its natural language interactive human-machine collaboration.
MatPilot integrates unique cognitive abilities, extensive accumulated experience, and ongoing curiosity of human-beings.
arXiv Detail & Related papers (2024-11-10T12:23:44Z) - Many Heads Are Better Than One: Improved Scientific Idea Generation by A LLM-Based Multi-Agent System [62.832818186789545]
Virtual Scientists (VirSci) is a multi-agent system designed to mimic the teamwork inherent in scientific research.<n>VirSci organizes a team of agents to collaboratively generate, evaluate, and refine research ideas.<n>We show that this multi-agent approach outperforms the state-of-the-art method in producing novel scientific ideas.
arXiv Detail & Related papers (2024-10-12T07:16:22Z) - The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery [14.465756130099091]
This paper presents the first comprehensive framework for fully automatic scientific discovery.
We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, and describes its findings.
In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community.
arXiv Detail & Related papers (2024-08-12T16:58:11Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
We envision "AI scientists" as systems capable of skeptical learning and reasoning.
Biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets.
AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
arXiv Detail & Related papers (2024-04-03T16:08:01Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.
The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.
Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation [96.71370747681078]
We introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM.
For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs.
We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate.
arXiv Detail & Related papers (2023-10-05T04:06:12Z) - DLSIA: Deep Learning for Scientific Image Analysis [45.81637398863868]
DLSIA is a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures.
DLSIA features easy-to-use architectures such as autoencoders, tunable U-Nets, and parameter-lean mixed-scale dense networks (MSDNets)
arXiv Detail & Related papers (2023-08-02T21:32:41Z) - Automated Creation and Human-assisted Curation of Computable Scientific
Models from Code and Text [2.3746609573239756]
Domain experts cannot gain a complete understanding of the implementation of a scientific model if they are not familiar with the code.
We develop a system for the automated creation and human-assisted curation of scientific models.
We present experimental results obtained using a dataset of code and associated text derived from NASA's Hypersonic Aerodynamics website.
arXiv Detail & Related papers (2022-01-28T17:31:38Z) - Scaling Systematic Literature Reviews with Machine Learning Pipelines [57.82662094602138]
Systematic reviews entail the extraction of data from scientific documents.
We construct a pipeline that automates each of these aspects, and experiment with many human-time vs. system quality trade-offs.
We find that we can get surprising accuracy and generalisability of the whole pipeline system with only 2 weeks of human-expert annotation.
arXiv Detail & Related papers (2020-10-09T16:19:42Z) - Autonomous discovery in the chemical sciences part II: Outlook [2.566673015346446]
This two-part review examines how automation has contributed to different aspects of discovery in the chemical sciences.
It is increasingly important to articulate what the role of automation and computation has been in the scientific process.
arXiv Detail & Related papers (2020-03-30T19:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.