Emerging Cyber Attack Risks of Medical AI Agents
- URL: http://arxiv.org/abs/2504.03759v1
- Date: Wed, 02 Apr 2025 08:04:53 GMT
- Title: Emerging Cyber Attack Risks of Medical AI Agents
- Authors: Jianing Qiu, Lin Li, Jiankai Sun, Hao Wei, Zhe Xu, Kyle Lam, Wu Yuan,
- Abstract summary: Large language models (LLMs)-powered AI agents exhibit a high level of autonomy in addressing medical and healthcare challenges.<n>With the ability to access various tools, they can operate within an open-ended action space.<n>We investigated one particular risk, i.e., cyber attack vulnerability of medical AI agents, as agents have access to the Internet through web browsing tools.
- Score: 18.618669974492366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs)-powered AI agents exhibit a high level of autonomy in addressing medical and healthcare challenges. With the ability to access various tools, they can operate within an open-ended action space. However, with the increase in autonomy and ability, unforeseen risks also arise. In this work, we investigated one particular risk, i.e., cyber attack vulnerability of medical AI agents, as agents have access to the Internet through web browsing tools. We revealed that through adversarial prompts embedded on webpages, cyberattackers can: i) inject false information into the agent's response; ii) they can force the agent to manipulate recommendation (e.g., healthcare products and services); iii) the attacker can also steal historical conversations between the user and agent, resulting in the leak of sensitive/private medical information; iv) furthermore, the targeted agent can also cause a computer system hijack by returning a malicious URL in its response. Different backbone LLMs were examined, and we found such cyber attacks can succeed in agents powered by most mainstream LLMs, with the reasoning models such as DeepSeek-R1 being the most vulnerable.
Related papers
- WASP: Benchmarking Web Agent Security Against Prompt Injection Attacks [36.97842000562324]
A benchmark called WASP introduces realistic web agent hijacking objectives and an isolated environment to test them.
Our evaluation shows that even AI agents backed by models with advanced reasoning capabilities are susceptible to low-effort human-written prompt injections.
Agents begin executing the adversarial instruction between 16 and 86% of the time but only achieve the goal between 0 and 17% of the time.
arXiv Detail & Related papers (2025-04-22T17:51:03Z) - AI Agents in Cryptoland: Practical Attacks and No Silver Bullet [36.49717045080722]
This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios.<n>We introduce the concept of context manipulation -- a comprehensive attack vector that exploits unprotected context surfaces.<n>Our findings indicate that prompt-based defenses are insufficient, as malicious inputs can corrupt an agent's stored context.
arXiv Detail & Related papers (2025-03-20T15:44:31Z) - AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents [75.85554113398626]
We develop a benchmark called AgentDAM to evaluate how well existing and future AI agents can limit processing of potentially private information.<n>Our benchmark simulates realistic web interaction scenarios and is adaptable to all existing web navigation agents.
arXiv Detail & Related papers (2025-03-12T19:30:31Z) - Poison Attacks and Adversarial Prompts Against an Informed University Virtual Assistant [3.0874677990361246]
Large language models (LLMs) are particularly vulnerable to adversarial attacks.<n>The rapid development pace of AI-based systems is being driven by the potential of Generative AI (GenAI) to assist humans in decision making.<n>A threat actor can use security gaps, poor safeguards, and limited data governance to carry out attacks that grant unauthorized access to the system and its data.
arXiv Detail & Related papers (2024-11-03T05:34:38Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Multi-Agent Actor-Critics in Autonomous Cyber Defense [0.5261718469769447]
Multi-Agent Deep Reinforcement Learning (MADRL) presents a promising approach to enhancing the efficacy and resilience of autonomous cyber operations.
We demonstrate each agent is able to learn quickly and counter act on the threats autonomously using MADRL in simulated cyber-attack scenarios.
arXiv Detail & Related papers (2024-10-11T15:15:09Z) - HAICOSYSTEM: An Ecosystem for Sandboxing Safety Risks in Human-AI Interactions [76.42274173122328]
We present HAICOSYSTEM, a framework examining AI agent safety within diverse and complex social interactions.
We run 1840 simulations based on 92 scenarios across seven domains (e.g., healthcare, finance, education)
Our experiments show that state-of-the-art LLMs, both proprietary and open-sourced, exhibit safety risks in over 50% cases.
arXiv Detail & Related papers (2024-09-24T19:47:21Z) - Is Generative AI the Next Tactical Cyber Weapon For Threat Actors? Unforeseen Implications of AI Generated Cyber Attacks [0.0]
This paper delves into the escalating threat posed by the misuse of AI, specifically through the use of Large Language Models (LLMs)
Through a series of controlled experiments, the paper demonstrates how these models can be manipulated to bypass ethical and privacy safeguards to effectively generate cyber attacks.
We also introduce Occupy AI, a customized, finetuned LLM specifically engineered to automate and execute cyberattacks.
arXiv Detail & Related papers (2024-08-23T02:56:13Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.
We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.
We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents [47.219047422240145]
We take the first step to investigate one of the typical safety threats, backdoor attack, to LLM-based agents.
Specifically, compared with traditional backdoor attacks on LLMs that are only able to manipulate the user inputs and model outputs, agent backdoor attacks exhibit more diverse and covert forms.
arXiv Detail & Related papers (2024-02-17T06:48:45Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.