RF-BayesPhysNet: A Bayesian rPPG Uncertainty Estimation Method for Complex Scenarios
- URL: http://arxiv.org/abs/2504.03915v1
- Date: Fri, 04 Apr 2025 20:24:57 GMT
- Title: RF-BayesPhysNet: A Bayesian rPPG Uncertainty Estimation Method for Complex Scenarios
- Authors: Rufei Ma, Chao Chen,
- Abstract summary: Remote photoplethys technology infers heart rate by capturing subtle color changes in facial skin using a camera.<n> measurement accuracy significantly decreases in complex scenarios.<n>Deep learning models often neglect of measurement uncertainty, limiting their credibility in dynamic scenes.
- Score: 5.349703489635052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote photoplethysmography (rPPG) technology infers heart rate by capturing subtle color changes in facial skin using a camera, demonstrating great potential in non-contact heart rate measurement. However, measurement accuracy significantly decreases in complex scenarios such as lighting changes and head movements compared to ideal laboratory conditions. Existing deep learning models often neglect the quantification of measurement uncertainty, limiting their credibility in dynamic scenes. To address the issue of insufficient rPPG measurement reliability in complex scenarios, this paper introduces Bayesian neural networks to the rPPG field for the first time, proposing the Robust Fusion Bayesian Physiological Network (RF-BayesPhysNet), which can model both aleatoric and epistemic uncertainty. It leverages variational inference to balance accuracy and computational efficiency. Due to the current lack of uncertainty estimation metrics in the rPPG field, this paper also proposes a new set of methods, using Spearman correlation coefficient, prediction interval coverage, and confidence interval width, to measure the effectiveness of uncertainty estimation methods under different noise conditions. Experiments show that the model, with only double the parameters compared to traditional network models, achieves a MAE of 2.56 on the UBFC-RPPG dataset, surpassing most models. It demonstrates good uncertainty estimation capability in no-noise and low-noise conditions, providing prediction confidence and significantly enhancing robustness in real-world applications. We have open-sourced the code at https://github.com/AIDC-rPPG/RF-Net
Related papers
- Adaptive Sampling to Reduce Epistemic Uncertainty Using Prediction Interval-Generation Neural Networks [0.0]
This paper presents an adaptive sampling approach designed to reduce epistemic uncertainty in predictive models.<n>Our primary contribution is the development of a metric that estimates potential epistemic uncertainty.<n>A batch sampling strategy based on Gaussian processes (GPs) is also proposed.<n>We test our approach on three unidimensional synthetic problems and a multi-dimensional dataset based on an agricultural field for selecting experimental fertilizer rates.
arXiv Detail & Related papers (2024-12-13T21:21:47Z) - Bayesian optimized deep ensemble for uncertainty quantification of deep neural networks: a system safety case study on sodium fast reactor thermal stratification modeling [10.055838489452817]
Deep ensembles (DEs) are efficient and scalable methods for uncertainty quantification (UQ) in Deep Neural Networks (DNNs)<n>We propose a novel method that combines Bayesian optimization (BO) with DE, referred to as BODE, to enhance both predictive accuracy and UQ.<n>We apply BODE to a case study involving a Densely connected Convolutional Neural Network (DCNN) trained on computational fluid dynamics (CFD) data to predict eddy viscosity in sodium fast reactor thermal stratification modeling.
arXiv Detail & Related papers (2024-12-11T21:06:50Z) - Shedding Light on Large Generative Networks: Estimating Epistemic Uncertainty in Diffusion Models [15.352556466952477]
Generative diffusion models are notable for their large parameter count (exceeding 100 million) and operation within high-dimensional image spaces.
We introduce an innovative framework, Diffusion Ensembles for Capturing Uncertainty (DECU), designed for estimating epistemic uncertainty for diffusion models.
arXiv Detail & Related papers (2024-06-05T14:03:21Z) - Estimating Epistemic and Aleatoric Uncertainty with a Single Model [5.871583927216653]
We introduce a new approach to ensembling, hyper-diffusion models (HyperDM)
HyperDM offers prediction accuracy on par with, and in some cases superior to, multi-model ensembles.
We validate our method on two distinct real-world tasks: x-ray computed tomography reconstruction and weather temperature forecasting.
arXiv Detail & Related papers (2024-02-05T19:39:52Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
Uncertainty quantification is a central challenge in reliable and trustworthy machine learning.
We show a trade-off between classification accuracy and calibration, unveiling a double descent like behavior in the calibration curve of optimally regularized estimators.
This is in contrast with the empirical Bayes method, which we show to be well calibrated in our setting despite the higher generalization error and overparametrization.
arXiv Detail & Related papers (2022-10-23T16:01:08Z) - Density Regression and Uncertainty Quantification with Bayesian Deep
Noise Neural Networks [4.376565880192482]
Deep neural network (DNN) models have achieved state-of-the-art predictive accuracy in a wide range of supervised learning applications.
accurately quantifying the uncertainty in DNN predictions remains a challenging task.
We propose the Bayesian Deep Noise Neural Network (B-DeepNoise), which generalizes standard Bayesian DNNs by extending the random noise variable to all hidden layers.
We evaluate B-DeepNoise against existing methods on benchmark regression datasets, demonstrating its superior performance in terms of prediction accuracy, uncertainty quantification accuracy, and uncertainty quantification efficiency.
arXiv Detail & Related papers (2022-06-12T02:47:29Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.