論文の概要: Can LLMs Interpret and Leverage Structured Linguistic Representations? A Case Study with AMRs
- arxiv url: http://arxiv.org/abs/2504.04745v1
- Date: Mon, 07 Apr 2025 05:38:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:12:36.951682
- Title: Can LLMs Interpret and Leverage Structured Linguistic Representations? A Case Study with AMRs
- Title(参考訳): LLMは構造的言語表現を解釈できるか? : AMRを用いて
- Authors: Ankush Raut, Xiaofeng Zhu, Maria Leonor Pacheco,
- Abstract要約: 本稿では,Large Language Models (LLMs) が構造化言語表現の形で文脈情報を活用する能力を評価する。
抽象的意味表現(AMR:Abstract Meaning Representation)構造を多種多様な言語タスクに適用し,短いコンテキストと長いコンテキストの両方を符号化することの影響について検討する。
- 参考スコア(独自算出の注目度): 10.808201018448274
- License:
- Abstract: This paper evaluates the ability of Large Language Models (LLMs) to leverage contextual information in the form of structured linguistic representations. Specifically, we examine the impact of encoding both short and long contexts using Abstract Meaning Representation (AMR) structures across a diverse set of language tasks. We perform our analysis using 8-bit quantized and instruction-tuned versions of Llama 3.1 (8B), Phi-3, and Mistral 7B. Our results indicate that, for tasks involving short contexts, augmenting the prompt with the AMR of the original language context often degrades the performance of the underlying LLM. However, for tasks that involve long contexts, such as dialogue summarization in the SAMSum dataset, this enhancement improves LLM performance, for example, by increasing the zero-shot cosine similarity score of Llama 3.1 from 66.2% to 76%. This improvement is more evident in the newer and larger LLMs, but does not extend to the older or smaller ones. In addition, we observe that LLMs can effectively reconstruct the original text from a linearized AMR, achieving a cosine similarity of 81.3% in the best-case scenario.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) が構造化言語表現の形で文脈情報を活用する能力を評価する。
具体的には,多種多様な言語タスクを対象とした抽象的意味表現(AMR)構造を用いて,短い文脈と長い文脈の両方を符号化することの影響について検討する。
Llama 3.1 (8B), Phi-3, Mistral 7Bの8ビット量子化および命令調整版を用いて分析を行った。
この結果から,短い文脈を含むタスクに対して,元の言語コンテキストのAMRによるプロンプトの増大は,基礎となるLLMの性能を劣化させることが多いことが示唆された。
しかし、SAMSumデータセットの対話要約のような長いコンテキストを含むタスクの場合、例えば、Llama 3.1のゼロショットコサイン類似度スコアを66.2%から76%に増やすことで、LLMのパフォーマンスが向上する。
この改善は、より新しい大型のLCMでは明らかであるが、より古いものやより小さなものにも拡張されない。
さらに,LLM は線形化された AMR からテキストを効果的に再構築し,コサイン類似度が81.3% となることを観察した。
関連論文リスト
- SR-LLM: Rethinking the Structured Representation in Large Language Model [25.876300810298797]
本稿では,構造化表現を大規模言語モデルと統合する優れた方法を探るため,SR-LLMを提案する。
幅広い下流データセットでは、特にPAWSでは3.17%、12.38%のパフォーマンス向上が見られた。
論文 参考訳(メタデータ) (2025-02-20T08:17:56Z) - Rethinking Semantic Parsing for Large Language Models: Enhancing LLM Performance with Semantic Hints [20.844061807562436]
本稿では,意味的ヒントをプロンプト内に埋め込む新しいプロンプト手法であるSENSEを提案する。
実験の結果、SENSE は様々なタスクで LLM のパフォーマンスを継続的に改善していることがわかった。
論文 参考訳(メタデータ) (2024-09-22T14:35:09Z) - Enhancing LLM's Cognition via Structurization [41.13997892843677]
大規模言語モデル(LLM)は因果的かつシーケンシャルな視点で入力コンテキストを処理する。
本稿では,コンテキスト構造化という新しい概念を提案する。
具体的には、平易で秩序のない文脈文を、適切に順序付けされ階層的に構造化された要素に変換する。
論文 参考訳(メタデータ) (2024-07-23T12:33:58Z) - Assessing LLMs for Zero-shot Abstractive Summarization Through the Lens of Relevance Paraphrasing [37.400757839157116]
大言語モデル(LLM)は、与えられた記事に対する抽象的な要約のゼロショット生成において最先端のパフォーマンスを達成した。
本稿では,LLMのロバスト性を測定するためのシンプルな戦略であるrelevance paraphrasingを提案する。
論文 参考訳(メタデータ) (2024-06-06T12:08:43Z) - Potential and Limitations of LLMs in Capturing Structured Semantics: A Case Study on SRL [78.80673954827773]
大きな言語モデル(LLM)は、言語理解を高め、解釈可能性を改善し、バイアスを減らすために構造化セマンティクスをキャプチャする上で重要な役割を果たす。
セマンティック・ロール・ラベルリング(SRL)を,構造化意味論を抽出するLLMの能力を探るための基本課題として用いることを提案する。
LLMは実際にセマンティック構造をキャプチャすることができ、スケールアップは常にポテンシャルを反映するわけではない。
エラーのかなりの重複は、LLMと訓練されていない人間の両方によって行われ、全てのエラーの約30%を占めることに私たちは驚いています。
論文 参考訳(メタデータ) (2024-05-10T11:44:05Z) - Analyzing the Role of Semantic Representations in the Era of Large Language Models [104.18157036880287]
大規模言語モデル(LLM)の時代における意味表現の役割について検討する。
本稿では, AMRCoT と呼ばれる AMR-driven chain-of- Thought prompting 法を提案する。
AMRのどの入力例が役に立つかは予測できないが,複数単語の表現でエラーが発生する傾向にある。
論文 参考訳(メタデータ) (2024-05-02T17:32:59Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
大規模言語モデル(LLM)は汎用AIエージェントとして広く利用されている。
本稿では,入力コンテキストの縮小バージョンを生成するために,言語モデルを微調整するフレームワークであるLearning to Reduceを提案する。
入力コンテキストから関連する証拠を選択する際に,本モデルが同等の精度を達成することを示す。
論文 参考訳(メタデータ) (2024-02-22T00:41:23Z) - Improving Translation Faithfulness of Large Language Models via
Augmenting Instructions [89.76691340615848]
SWIE(Segment-Weighted Instruction Embedding)と命令追従データセットOVERMISSを提案する。
SWIEは、以下の入力および応答表現に大域的な命令表現を追加することにより、モデル命令理解を改善する。
OVERMISSは、オーバー翻訳とミス翻訳の結果を正しい翻訳と比較することにより、モデルの忠実度を向上させる。
論文 参考訳(メタデータ) (2023-08-24T09:32:29Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。