Analog phase-sensitive time-reversal of optically-carried radiofrequency signals
- URL: http://arxiv.org/abs/2504.05031v1
- Date: Mon, 07 Apr 2025 12:52:41 GMT
- Title: Analog phase-sensitive time-reversal of optically-carried radiofrequency signals
- Authors: Thomas Llauze, Anne Louchet-Chauvet,
- Abstract summary: We report the first experimental realization of a fully analog, phase-preserving time-reversal architecture for optically-carried radiofrequency signals.<n>The method exploits the exceptional coherence properties of rare-earth ion-doped materials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving low-latency time-reversal of broadband radiofrequency signals is crucial for reliable communications in dynamic, uncontrolled environments. However, existing approaches are either digitally assisted -- making broadband extension challenging -- or limited to amplitude modulation. In this work, we report the very first experimental realization of a fully analog, phase-preserving time-reversal architecture for optically-carried radiofrequency signals. The method exploits the exceptional coherence properties of rare-earth ion-doped materials, and leverages the well-established photon echo mechanism, widely used in quantum technologies. While our demonstration is conducted with a modest bandwidth, we identify the fundamental cause of this limitation and propose solutions for future scalability.
Related papers
- Inline-Amplification-Free Time Transfer Utilizing Waveform-Resolved Single-Photon Detection [16.20746502110943]
We propose a waveform-resolved single photon detection technique and experimentally perform tomography on the weak transferred signal with an average photon number of just 0.617 per pulse.<n>We achieve the time deviation of 95.68 ps and 192.58 ps at 200 km and 300 km respectively at an averaging time of 1 s, overcoming the technical lower bound induced by traditional photodetectors.
arXiv Detail & Related papers (2024-12-24T15:41:52Z) - Digital reconstruction of squeezed light for quantum information processing [1.7466032719896136]
We propose and demonstrate an asynchronous detection method for squeezed light that eliminates the need for complex systems.
We validate the feasibility of our approach in two key applications: the distribution of squeezed light over a 10 km fiber channel, and secure quantum key distribution between two labs connected via deployed fiber.
This demonstrates a practical digital reconstruction method for squeezed light, opening new avenues for practical distributed quantum sensing networks and high-performance and long-distance quantum communication.
arXiv Detail & Related papers (2024-11-12T09:32:44Z) - OFDM-Standard Compatible SC-NOFS Waveforms for Low-Latency and Jitter-Tolerance Industrial IoT Communications [53.398544571833135]
This work proposes a spectrally efficient irregular Sinc (irSinc) shaping technique, revisiting the traditional Sinc back to 1924.
irSinc yields a signal with increased spectral efficiency without sacrificing error performance.
Our signal achieves faster data transmission within the same spectral bandwidth through 5G standard signal configuration.
arXiv Detail & Related papers (2024-06-07T09:20:30Z) - Reliable Beamforming at Terahertz Bands: Are Causal Representations the
Way Forward? [85.06664206117088]
Multi-user wireless systems can meet metaverse requirements by utilizing terahertz bandwidth with massive number of antennas.
Existing solutions lack proper modeling of channel dynamics, resulting in inaccurate beamforming solutions in high-mobility scenarios.
Herein, a dynamic, semantically aware beamforming solution is proposed for the first time, utilizing novel artificial intelligence algorithms in variational causal inference.
arXiv Detail & Related papers (2023-03-14T16:02:46Z) - Towards Fully Passive Time-Bin Quantum Key Distribution over Multi-Mode
Channels [37.69303106863453]
Phase stabilization of distant quantum time-bin interferometers is a major challenge for quantum communication networks.
We demonstrate a novel approach using reference frame independent time-bin quantum key distribution.
This is achieved without any mode filtering, mode sorting, adaptive optics, active basis selection, or active phase alignment.
arXiv Detail & Related papers (2023-02-10T03:53:21Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Topological Josephson parametric amplifier array: A proposal for directional, broadband, and low-noise amplification [39.58317527488534]
Low-noise microwave amplifiers are crucial for detecting weak signals in fields such as quantum technology and radio astronomy.
We show that compact devices with few sites can achieve exceptional performance, with gains exceeding 20 dB over a bandwidth ranging from hundreds of MHz to GHz.
The device also operates near the quantum noise limit and provides topological protection against up to 15% fabrication disorder.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - Probing quantum devices with radio-frequency reflectometry [68.48453061559003]
Radio-frequency reflectometry can measure changes in impedance even when their duration is extremely short, down to a microsecond or less.
Examples of reflectometry experiments include projective measurements of qubits and Majorana devices for quantum computing.
This book aims to introduce the readers to the technique, to review the advances to date and to motivate new experiments in fast quantum device dynamics.
arXiv Detail & Related papers (2022-02-21T20:14:21Z) - Frequency-bin entanglement from domain-engineered down-conversion [101.18253437732933]
We present a single-pass source of discrete frequency-bin entanglement which does not use filtering or a resonant cavity.
We use a domain-engineered nonlinear crystal to generate an eight-mode frequency-bin entangled source at telecommunication wavelengths.
arXiv Detail & Related papers (2022-01-18T19:00:29Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Machine Learning Framework for Sensing and Modeling Interference in IoT
Frequency Bands [2.6839965970551276]
There is growing need for better understanding of the spectrum occupancy with newly emerging access technologies supporting the Internet of Things.
We present a framework to capture and model the traffic behavior of short-time spectrum occupancy for IoT applications in the shared bands to determine the existing interference.
arXiv Detail & Related papers (2021-06-10T19:10:40Z) - Optical-domain spectral super-resolution via a quantum-memory-based
time-frequency processor [0.0]
We exploit the full spectral information of the optical field in order to beat the Rayleigh limit in spectroscopy.
We employ an optical quantum memory with spin-wave storage and an embedded processing capability to implement a time-inversion interferometer for input light.
Our tailored measurement achieves a resolution of 15 kHz and requires 20 times less photons than a corresponding Rayleigh-limited conventional method.
arXiv Detail & Related papers (2021-06-08T15:35:41Z) - Real-Time Radio Technology and Modulation Classification via an LSTM
Auto-Encoder [29.590446724625693]
We present a learning framework based on an LSTM denoising auto-encoder designed to automatically extract stable and robust features from noisy radio signals.
Results on realistic synthetic as well as over-the-air radio data demonstrate that the proposed framework reliably and efficiently classifies received radio signals.
arXiv Detail & Related papers (2020-11-16T21:41:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.