論文の概要: SciOps: Achieving Productivity and Reliability in Data-Intensive Research
- arxiv url: http://arxiv.org/abs/2401.00077v2
- Date: Wed, 06 Nov 2024 22:25:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:36:32.619071
- Title: SciOps: Achieving Productivity and Reliability in Data-Intensive Research
- Title(参考訳): SciOps: データ集約リサーチにおける生産性と信頼性の実現
- Authors: Erik C. Johnson, Thinh T. Nguyen, Benjamin K. Dichter, Frank Zappulla, Montgomery Kosma, Kabilar Gunalan, Yaroslav O. Halchenko, Shay Q. Neufeld, Kristen Ratan, Nicholas J. Edwards, Susanne Ressl, Sarah R. Heilbronner, Michael Schirner, Petra Ritter, Brock Wester, Satrajit Ghosh, Maryann E. Martone, Franco Pestilli, Dimitri Yatsenko,
- Abstract要約: 科学者たちは、実験や研究の目標を拡大するために、機器、自動化、協調ツールの進歩をますます活用している。
神経科学を含む様々な科学分野は、コラボレーション、インスピレーション、自動化を強化するための重要な技術を採用してきた。
厳密な科学的操作の原理を説明する5段階の能力成熟度モデルを導入する。
- 参考スコア(独自算出の注目度): 0.8414742293641504
- License:
- Abstract: Scientists are increasingly leveraging advances in instruments, automation, and collaborative tools to scale up their experiments and research goals, leading to new bursts of discovery. Various scientific disciplines, including neuroscience, have adopted key technologies to enhance collaboration, reproducibility, and automation. Drawing inspiration from advancements in the software industry, we present a roadmap to enhance the reliability and scalability of scientific operations for diverse research teams tackling large and complex projects. We introduce a five-level Capability Maturity Model describing the principles of rigorous scientific operations in projects ranging from small-scale exploratory studies to large-scale, multi-disciplinary research endeavors. Achieving higher levels of operational maturity necessitates the adoption of new, technology-enabled methodologies, which we refer to as SciOps. This concept is derived from the DevOps methodologies that have revolutionized the software industry. SciOps involves digital research environments that seamlessly integrate computational, automation, and AI-driven efforts throughout the research cycle-from experimental design and data collection to analysis and dissemination, ultimately leading to closed-loop discovery. This maturity model offers a framework for assessing and improving operational practices in multidisciplinary research teams, guiding them towards greater efficiency and effectiveness in scientific inquiry.
- Abstract(参考訳): 科学者たちは、機器、自動化、協調ツールの進歩を活用して、実験や研究の目標を拡大し、新たな発見へと繋がっている。
神経科学を含む様々な科学分野は、コラボレーション、再現性、自動化を強化する重要な技術を採用してきた。
ソフトウェア産業の進歩からインスピレーションを得て、大規模で複雑なプロジェクトに取り組むさまざまな研究チームのための、科学的操作の信頼性とスケーラビリティを高めるロードマップを提示します。
本稿では,小規模探索研究から大規模・多分野研究活動まで,プロジェクトにおける厳密な科学活動の原則を記述した5段階の能力成熟モデルを提案する。
高いレベルの運用成熟を達成するには、SciOpsと呼ばれる新しい技術対応の方法論を採用する必要があります。
このコンセプトは、ソフトウェア産業に革命をもたらしたDevOps方法論に由来する。
SciOpsには、実験的な設計やデータ収集から分析と普及に至るまで、研究サイクルを通じて計算、自動化、AI駆動の取り組みをシームレスに統合するデジタルリサーチ環境が含まれており、最終的にはクローズループ発見につながっている。
この成熟度モデルは、多分野の研究チームにおける運用実践の評価と改善のためのフレームワークを提供し、科学的な調査においてより効率と有効性に導く。
関連論文リスト
- The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms [0.4532517021515834]
本研究では、DevSecOpsとGenerative Artificial Intelligenceの統合が、IT企業におけるソフトウェアデリバリのパフォーマンスに与える影響について検討する。
その結果、研究開発の効率が大幅に向上し、ソースコード管理が改善され、ソフトウェアの品質とセキュリティが向上した。
論文 参考訳(メタデータ) (2024-11-04T16:44:01Z) - Two Heads Are Better Than One: A Multi-Agent System Has the Potential to Improve Scientific Idea Generation [48.29699224989952]
VirSciは研究のアイデアを共同で生成し、評価し、洗練するエージェントのチームを組織している。
このマルチエージェントアプローチは、新規で影響力のある科学的アイデアを生み出す上で、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-12T07:16:22Z) - DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
本研究では,新しい科学的発見の完全なサイクルを実行するエージェントの能力を開発し,ベンチマークする最初の仮想環境であるDiscoVERYWORLDを紹介する。
8つのトピックにまたがる120の異なる課題タスクが含まれており、3レベルの難易度といくつかのパラメトリックなバリエーションがある。
従来の環境においてよく機能する強力なベースラインエージェントが、ほとんどのdiscoVERYWORLDタスクに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-06-10T20:08:44Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
我々は,Multi-Aspect Summarization of ScientificAspectsに関する総合テキストデータセットであるMASSWを紹介する。
MASSWには過去50年間にわたる17の主要なコンピュータサイエンスカンファレンスから152,000以上の査読論文が含まれている。
我々は、この新しいデータセットを用いてベンチマーク可能な、複数の新しい機械学習タスクを通じて、MASSWの有用性を実証する。
論文 参考訳(メタデータ) (2024-06-10T15:19:09Z) - Ten simple rules for teaching sustainable software engineering [0.0]
高品質な研究ソフトウェアを開発するには、多くのソフトウェア開発スキルを開発する必要がある。
計算研究における基礎的・優れた開発プラクティスの確保に重点が置かれている。
10 Simple Rulesコレクションの最近の記事は、生物学の学生にコンピュータサイエンスとコーディング技術の教育について論じている。
我々は、科学者が持続可能なソフトウェアパッケージを開発するために必要なスキルを効果的に教えるための具体的な手順を説明することによって、この議論を進める。
論文 参考訳(メタデータ) (2024-02-07T10:16:20Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Industry-Academia Research Collaboration in Software Engineering: The
Certus Model [13.021014899410684]
ソフトウェアエンジニアリングでスケーラブルで効果的な研究コラボレーションを構築することは、非常に難しいことで知られています。
本稿では,参加型知識創造の文化を実現するための,産学連携の成功要因を理解することを目的とする。
論文 参考訳(メタデータ) (2022-04-23T10:16:23Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
AIとML技術による研究は、しばしば非同期の目標とタイムラインを備えたさまざまな設定で動作します。
我々は、NASAとESAの民間パートナーシップの下で、AIアクセラレータであるFrontier Development Lab(FDL)のケーススタディを実行する。
FDL研究は、AI研究の責任ある開発、実行、普及に基礎を置く原則的な実践に従う。
論文 参考訳(メタデータ) (2020-11-09T21:23:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。